On-line: гостей 0. Всего: 0 [подробнее..]
Добро пожаловать!
Форум ВКО открыт для дискуссий.



АвторСообщение
milstar
moderator




Сообщение: 1860
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 13.11.09 15:19. Заголовок: Operazionnie ysiliteli ,ZAP/AZP & (продолжение)


1941: First (vacuum tube) op-amp

An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V.
######################################################
It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs.
#########################################################################
This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that
#######################################################################
would not have been possible otherwise.[3]
###########################


http://en.wikipedia.org/wiki/Operational_amplifier

Спасибо: 0 
Профиль
Ответов - 301 , стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 All [только новые]


milstar
moderator




Сообщение: 4792
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 14:36. Заголовок: http://datasheets.ma..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4793
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 15:02. Заголовок: lutschij 16-bit 1..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4794
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 15:12. Заголовок: http://cds.linear.co..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4795
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 15:21. Заголовок: lutschij 16 bit 16..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4796
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 15:37. Заголовок: lutschij 14 -bit ot ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4797
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 15:49. Заголовок: lutschij 12 bit on ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4798
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 16:03. Заголовок: lutschij 12 bit ot ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4799
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 16:22. Заголовок: smotri wische dannie..


smotri wische dannie MAX109

http://www.maxim-ic.com/app-notes/index.mvp/id/810<\/u><\/a>


APPLICATION NOTE 810 Sep 16, 2010
Understanding flash ADCs

Abstract: Flash analog-to-digital converters, also known as parallel ADCs, are the fastest way to convert an analog signal
##############################################################################
to a digital signal. Flash ADCs are ideal for applications requiring very large bandwidth, but they consume more power than other ADC architectures and are generally limited to 8-bit resolution. This tutorial will discuss flash converters and compare them with other converter types.

Introduction
Flash analog-to-digital converters, also known as parallel ADCs, are the fastest way to convert an analog signal to a digital signal. Flash ADCs are suitable for applications requiring very large bandwidths. However, these converters consume considerable power, have relatively low resolution, and can be quite expensive. This limits them to high-frequency applications that typically cannot be addressed any other way. Typical examples include data acquisition, satellite communication, radar processing, sampling oscilloscopes, and high-density disk drives.

This tutorial will discuss flash converters and compare them with other converter types.

Architectural details
Flash ADCs are made by cascading high-speed comparators. Figure 1 shows a typical flash ADC block diagram. For an N-bit converter, the circuit employs 2N-1 comparators. A resistive-divider with 2N resistors provides the reference voltage. The reference voltage for each comparator is one least significant bit (LSB) greater than the reference voltage for the comparator immediately below it. Each comparator produces a 1 when its analog input voltage is higher than the reference voltage applied to it. Otherwise, the comparator output is 0. Thus, if the analog input is between VX4 and VX5, comparators X1 through X4 produce 1s and the remaining comparators produce 0s. The point where the code changes from ones to zeros is the point at which the input signal becomes smaller than the respective comparator reference-voltage levels.


Figure 1. Flash ADC architecture. If the analog input is between VX4 and VX5, comparators X1 through X4 produce 1s and the remaining comparators produce 0s.

This architecture is known as thermometer code encoding. This name is used because the design is similar to a mercury thermometer, in which the mercury column always rises to the appropriate temperature and no mercury is present above that temperature. The thermometer code is then decoded to the appropriate digital output code.

The comparators are typically a cascade of wideband low-gain stages. They are low gain because at high frequencies it is difficult to obtain both wide bandwidth and high gain. The comparators are designed for low-voltage offset, so that the input offset of each comparator is smaller than an LSB of the ADC. Otherwise, the comparator's offset could falsely trip the comparator, resulting in a digital output code that is not representative of a thermometer code. A regenerative latch at each comparator output stores the result. The latch has positive feedback, so that the end state is forced to either a 1 or a 0.

Given these basics, some adjustments are needed to optimize the flash converter architecture.

Sparkle codes
Normally, the comparator outputs will be a thermometer code, such as 00011111. Errors can cause an output like 00010111, meaning that there is a spurious zero in the result. This out-of-sequence 0 is called a sparkle, which is caused by imperfect input settling or comparator timing mismatch. The magnitude of the error can be quite large. Modern converters like the MAX109/MAX104 employ an input track-and-hold in front of the ADC along with an encoding technique that suppresses sparkle codes.

Metastability
When the digital output from a comparator is ambiguous (neither a 1 nor a 0), the output is defined as metastable. Metastability can be reduced by allowing more time for regeneration. Gray-code encoding, which allows only 1 bit in the output to change at a time, can greatly improve metastability. . Thus, the comparator outputs are first converted to gray-code encoding and then later decoded to binary, if desired.

Another problem occurs when a metastable output drives two distinct circuits. It is possible for one circuit to declare the input a 1, while the other circuit thinks that it is a 0. This can create major errors. To avoid this conflict, only one circuit should sense a potentially mestatable output.

Input signal-frequency dependence
When the input signal changes before all the comparators have completed their tasks, the ADC's performance is adversely impacted. The most serious impact is a drop-off in signal-to-noise ratio (SNR) plus distortion (SINAD) as the frequency of the analog input frequency increases.

Measuring spurious-free dynamic range (SFDR) is another good way to observe converter performance. The "effective bits" achieved by the ADC is a function of input frequency; it can be improved by adding a track-and-hold (T/H) circuit in front of the ADC. The T/H circuit allows dramatic improvement, especially when input frequencies approach the Nyquist frequency, as shown in Figure 2 (taken from the MAX104 data sheet). Parts without T/H show a significant drop-off in SFDR.


Figure 2. Spurious-free dynamic range as a function of input frequency.

Clock jitter
SNR is degraded when there is jitter in the sampling clock. This becomes noticeable for high analog-input frequencies. To achieve accurate results, it is critical to provide the ADC with a low-jitter, sampling clock source.

Architectural trade-offs
ADCs can be implemented by employing a variety of architectures. The principal trade-offs among these alternatives are:

* The time it takes to complete a conversion (conversion time). For flash converters, the conversion time does not change materially with increased resolution. The conversion time for successive approximation register (SAR) or pipelined converters, however, increases approximately linearly with an increase in resolution (Figure 3a). For integrating ADCs, the conversion time doubles with every bit increase in resolution.

* Component matching requirements in the circuit. Flash ADC component matching typically limits resolution to around 8 bits. Calibration and trimming are sometimes used to improve the matching available on chip. Component matching requirements double with every bit increase in resolution. This pattern applies to flash, successive approximation, or pipelined converters, but not to integrating converters. For integrating converters, component matching does not materially increase with an increase in resolution (Figure 3b).

* Die size, cost, and power. For flash converters, every bit increase in resolution almost doubles the size of the ADC core circuitry. The power also doubles. In contrast, a SAR, pipelined, or sigma-delta ADC die size will increase linearly with an increase in resolution; an integrating converter core die size will not materially change with an increase in resolution (Figure 3c). Finally, it is well known that an increase in die size increases cost.


Figure 3. Architectural trade-offs.

Flash ADC vs. other ADC architectures
Flash vs. SAR ADCs
In a SAR converter, a single high-speed, high-accuracy comparator determines the bits, one bit at a time (from the MSB down to the LSB). This is done by comparing the analog input with a DAC whose output is updated by previously decided bits and thus successively approximates the analog input. This serial nature of the SAR limits its speed to no more than a few mega-samples per second (Msps), while flash ADCs exceed giga-samples per second (Gsps) conversion rates.

SAR converters are available in resolutions up to 16 bits. An example of such a device is the MAX1132. Flash ADCs are typically limited to around 8 bits. The slower speed also allows the SAR ADC to be much lower in power. For example, the MAX1106, an 8-bit SAR converter, uses 100µA at 3.3V with a conversion rate of 25ksps. The MAX104 dissipates 5.25W, about 16,000 times higher power consumption than the MAX1106 and 40,000 times faster in terms of its maximum sampling rate.

The SAR architecture is also less expensive. The MAX1106 at 1k volumes sells at something over a dollar (U.S.), while the MAX104 sells at several hundred dollars (U.S.). Package sizes are larger for flash converters. In addition to a larger die size requiring a larger package, the package needs to dissipate considerable power and needs many pins for power and ground signal integrity. The package size of the MAX104 is more than 50 times larger than the MAX1106.

Flash vs. pipelined ADCs
A pipelined ADC employs a parallel structure in which each stage works on one to a few bits of successive samples concurrently. This design improves speed at the expense of power and latency, but each pipelined stage is much slower than a flash section. The pipelined ADC requires accurate amplification in the DACs and interstage amplifiers, and these stages have to settle to the desired linearity level. By contrast, in a flash ADC the comparator only needs to be low offset and to resolve its inputs to a digital level; there is no linear settling time involved. Some flash converters require preamplifers to drive the comparators. Gain linearity needs to be specified carefully.

Pipelined converters convert at speeds of around 100Msps at 8- to 14-bit resolutions. An example of a pipelined converter is the MAX1449, a 105MHz, 10-bit ADC. For a given resolution, pipelined ADCs are around 10 times slower than flash converters of similar resolution. Pipelined converters are possibly the optimal architecture for ADCs that need to sample at rates up to around 100Msps with resolution at 10 bits and above. For resolutions up to 10 bits and conversion rates above a few hundred Msps, flash ADCs dominate.

Interestingly, there are some situations where flash ADCs are hidden inside a converter employing another architecture to increase its speed. This is the case, for example, in the MAX1200; a 16-bit pipelined ADC that includes an internal 5-bit flash ADC.

Flash vs. integrating ADCs
Single, dual, and multislope ADCs achieve high resolutions of 16 bits or more, are relatively inexpensive, and dissipate materially less power. These devices support very low conversion rates, typically less than a few hundred samples per second. Most applications are for monitoring DC signals in the instrumentation and industrial markets. This architecture competes with sigma-delta converters.

Flash vs. sigma-delta ADCs
Flash ADCs do not compete with a sigma-delta architecture because currently the achievable conversion rates differ by up to two orders of magnitude. The sigma-delta architecture is suitable for applications with much lower bandwidth, typically less than 1MHz, and with resolutions in the 12- to 24-bit range. Sigma-delta converters are capable of the highest resolution possible in ADCs. They require simpler anti-alias filters (if needed) to bandlimit the signal prior to conversion.

Sigma-delta ADCs trade speed for resolution by oversampling, followed by filtering to reduce noise. However, these devices are not always efficient for multichannel applications. This architecture can be implemented by using sampled data filters, also known as modulators, or continuous-time filters. For higher frequency conversion rates the continuous-time architecture is potentially capable of reaching conversion rates in the hundreds of Msps range with low resolution of 6 to 8 bits. This approach is still in the early research and development stage and offers competition to flash alternatives in the lower conversion rate range.

Another interesting use of a flash ADC is as a building block inside a sigma-delta circuit to increase the conversion rate of the ADC.

Subranging ADCs
When higher resolution converters or smaller die size and power for a given resolution are needed, multistage conversion is employed. This architecture is known as a subranging converter, also sometimes referred to as a multistep or half-flash converter. This approach combines ideas from successive approximation and flash architectures.

Subranging ADCs reduce the number of bits to be converted into smaller groups, which are then run through a lower-resolution flash converter. This approach reduces the number of comparators and reduces the logic complexity compared to a flash converter (Figure 4). The trade-off results in a slower conversion speed compared to flash.


Figure 4. Subranging ADC architecture.

The MAX153 is an 8-bit, 1Msps ADC implemented with a subranging architecture. This circuit employs a two-step technique. First, a conversion is completed with a 4-bit converter. A residue is created, where an 8-bit accurate DAC converts the result of the 4-bit conversion back to an analog signal. The analog signal is subtracted from the input signal. Second, this residue is again converted by the 4-bit ADC and the results of the first and second pass are combined to provide the 8-bit digital output.

Process technology
Flash converter speeds are currently in excess of 1Gsps. The 2.2Gbps MAX109 is fabricated with an advanced SiGE process. The MAX108 (1.5Gsps), MAX104 (1Gsps), and MAX106 (600Msps) 8-bit ADCs are manufactured with Maxim's proprietary, advanced GST-2 bipolar process ("giga"-speed silicon bipolar process).

CMOS flash converters are available at lower speed with resolutions compared to bipolar technology offerings. These ADCs are typically intended for integration into a larger CMOS circuit. CMOS, BiCMOS, and bipolar technologies will continue to improve, yielding increasingly higher conversion rates.

Conclusion
For applications requiring modest resolutions, typically up to 8-bits, at sampling frequencies in the high hundreds of MHz, the flash architecture may be the only viable alternative. The user must supply a low-jitter clock to ensure good ADC performance. For applications with high analog-input frequencies, the ADC chosen should have an internal track-and-hold.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4800
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 16:34. Заголовок: http://www.atmel.com..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4801
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 16:49. Заголовок: dlja parralelnix ADC..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4802
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:02. Заголовок: ADS5400 TI 12 bit 1 ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4803
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:13. Заголовок: Mozno realizowat na ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4804
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:17. Заголовок: Grazdanskoe primenen..


Grazdanskoe primenenie -blizajschee wremja sotowie seti w bolschisntwe ostanutsja WCDMA

http://www.analog.com/static/imported-files/application_notes/58327589985769549305955624592AN_807_0.pdf<\/u><\/a>


Multicarrier WCDMA Feasibility
by Brad Brannon and Bill Schofield



The key requirement of this wideband filtering is that signal aliasing is prevented. Therefore, any analog filtering must provide sufficient rejection so as to attenuate blockers into the noise floor as they alias back into the useable spectrum of the ADC. This is true for either IF sampling or direct conversion.


Assumptions: Given this information, the front-end design information can now be determined. If the largest peak signal at the antenna is about –36 dBm and the converter full scale is 4 dBm rms/7 dBm peak (2 V p-p into 200  is typical for many ADCs), a conversion gain of up to 43 dB can be used. A gain of 40 causes the ADC to be driven with a peak input of about +4 dBm, leaving 3 dB at the top that can serve as margin for power from other nearby strong signals as well as component margin. Given current receiver trends in LNAs, passive mixers and filter elements, typical downconverter blocks are possible with noise figures below 3 dB (not including the ADC). These numbers are used in the following calculations. If losses from cabling and other hardware are to be considered along with variations in component tolerance, they must be included as well.
The final assumption is that of sample rate for the ADC. With a base data rate of 3.84 MHz, clock rates of 16, 20, 24, and 32 are viable. Since converter data rates are steadily increasing and running, a higher sample rate has slight noise advantages. One of the higher rates, such as 92.16 MHz, should be used. If the lower rates are used for actual implementation, the SNR requirement increases by 1 dB for 76.8 MSPS and 2 dB for 61.44 MSPS. In addition to noise advantage, the higher sample rate allows more transition for band filters, as already discussed. If complex baseband sampling is used, a dual 12-bit or 14-bit converter family, such as the AD9228 and AD9248, are ideal.
ADC SNR requirements: Given the conversion gain and NF above, the ADC SNR can now be calculated. At the antenna, the noise spectral density is assumed to be –174 dBm/Hz. Given the conversion gain and noise figure previously stated, the noise spectral density (NSD) at the ADC input is –131 dBm/Hz (–174 + 40 + 3). This assumes that noise outside the Nyquist band of the ADC is filtered using antialiasing filters to prevent front-end thermal noise from aliasing when sampled by the ADC. If the ADC noise floor is 10 dB below that of the front-end noise, it contributes about 0.1 dB to the overall NF of the receiver. Therefore, a maximum ADC noise floor of –141 dBm/Hz can be expected. Higher ADC noise floors can be used. As the ADC noise begins to contribute to the floor of the receiver, some of the nonlinearities described in the “DNL and Some of its Effects on Converter Performance”


For IF sampling, the total noise in the Nyquist band of the ADC can be determined by simple integration. Over 46.08 MHz (the Nyquist band of 92.16 MHz), the total noise is found to be –64.4 dBm. If the rms full scale of the ADC is +4 dBm, this is a required minimum full-scale SNR of 68.4 dB. When larger blockers are considered, as in the case of band II and III, higher noise perform- ance is required from the ADC as seen in the following sections.
Although direct downconversion is not quite ready for this market space, it is the preferred architecture for cost and simplicity reasons. It is likely that this approach will be available within the scope of a new multicarrier development and is therefore considered in this application note.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4805
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:23. Заголовок: For direct conversio..


For direct conversion, there are several other considerations that must be made. First, a lower sample rate is likely. Since two converters are required, it is likely that a lower sample rate is used to keep digital processing and power as low as possible. A sample rate of 61.44 MSPS is likely, providing a full 61.44 MHz of complex bandwidth. If it is assumed that the ADCs keep the same input range, a 3 dB increase is allowable since the IQ splitter also divides the power between the two ADCs in addition to the losses associated with a typical frequency translation stage. Without this additional gain, 3 dB (approximately) of ADC range will be lost. In the digital processing, these signals are again summed and produce an overall signal 3 dB higher along with a 3 dB higher ADC noise floor from the noncorrelated ADC noise floor of both ADCs. At the same time, however, the effective ADC input range is also 3 dB higher as is the noise floor of the effective ADC contributions. This results in a first-order wash in sensitivity as signal levels and noise each increase by the same amount. If the signal path includes the extra 3 dB gain, the IP3 requirements increase a proportionate amount. First order, each single ADC must also meet the same requirements for IF sampling. Although the sample rate is lower than may have otherwise been used for IF sampling, the noise bandwidth is equal to the full sample rate. The result is that the noise performance is similar to that of an IF sampling solution operating at 122.88 MSPS with two added advantages. First, because the analog signals are at baseband, clock jitter is no longer a problem. Second, because the analog signals are at baseband, they are not subjected to input slew rate limitations of the converter, which is one of the biggest causes of poor harmonic distortion in IF sampling systems.
The primary focus thus far has been to provide a fixed gain solution that meets the dynamic range requirements. This requires a delicate balance between placing the ADC noise sufficiently below the receiver analog thermal noise without overdriving the ADC. As discussed earlier, a converter with a minimum SNR of 68.4 dB makes this possible.


For baseband sampling, the AD9238 and AD9248 dual, 12-bit and 14-bit converters are available. These devices are pin compatible and allow assembly options for platforms that may be common between single and multicarrier applications and where export/import restrictions may exist. In addition to these pin-compatible devices, new quad ADCs are available, including the AD9228 and AD9229. These quad, 12-bit converters are ideal for diversity baseband IQ sampling or for quad, low IF sampling applications such as phased array antennas.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4806
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:27. Заголовок: There are a number o..


There are a number of approaches to capture the distortion. One approach mixes the transmitted signal down close to dc and uses a high speed ADC to sample a bandwidth that is equal to the order of distortion times the bandwidth of the RF spectrum. A Nyquist band of 75 MHz and 100 MHz is required for three and four carriers respectively. Common sample rates of between 170 MHz and 210 MHz are used for this function (see Figure 15a).
An alternate approach mixes down to a low intermediate frequency (IF) and undersamples the transmitted signal. With this approach, the ADC samples the signal and the third-order distortion components without aliasing; the fifth- and higher order distortion terms are allowed to alias over the third-order terms and compensated by coefficient control (see Figure 15b). For four carriers at 153.6 MHz, a 122.88 MSPS converter is needed.
The ADC limitation is that it must introduce less distortion than the distortion being measured at the antenna and have a noise spectral density less than the antenna wideband emission requirements. The ADC noise can be averaged over multiple samples, relaxing the noise requirements of the ADC by the oversample ratio to typically 8 ENOB to 10 ENOB. The following discussion reveals a required noise level at 10 MHz offset is –30 dBm/1 MHz or –90 dBm/Hz. This level must be attenuated by typically 50 dB to reduce the maximum PA output to that of the ADC full scale; the directional coupler typically has about 40 dB of attenuation. Therefore, the spectral density at the ADC input is –140 dBm/Hz; across a 100 MHz Nyquist band, this corresponds to an ADC SNR of about 60 dB. The AD9430 provides mid 70s SFDR up to 200 MHz and an SNR of mid 60s, meeting these requirements.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4807
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 17:54. Заголовок: ATMEL’s TS8388 ADC J..


ATMEL’s TS8388 ADC Jitter
• According to ATMEL’s TS8388 ADC data-sheet (1GS/s,
8-bit & ENOB=7.1-bit), cited by Bill Jones, JAPJ=0.6 ps
JCLK=0.5 ps.
• Assuming JAIN=0.5 ps then JADC=0.93 ps
• From formula ENOB=7.4-bit
• High-speed ADC ENOB’s are jitter limited
#####################################
• GS/s, ENOB > 6.5-bit ADCs are hard to integrate on a
VLSI CMOS chip due to excess recovered clock’s jitter
#####################################
• Recovered clock period:
1200 ps (PAM-10), 800 ps (PAM-5)

http://www.ieee802.org/3/10GBT/public/mar03/babanezhad_2_0303.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4808
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 18:10. Заголовок: http://solidearth.jp..


http://solidearth.jpl.nasa.gov/insar/documents/InSAR_Concept_Study%20Report_7-27-04c.pdf<\/u><\/a>

ISAR dlja NASA space based radar s ATMEL 2.2 gigasamples / 10 bit SiGE

opsianie
http://www.atmel.com/journal/documents/issue6/Pg43_48_CodePatch.pdf<\/u><\/a>


4.1.2 Radar Hardware Electronics Development
An internal technology assessment workshop was held in October, 2003. The purpose
of this workshop was to assess past technology developments and identify common
radar components suitable for additional technology investment by InSAR. This was
accomplished by surveying past technology investments and new candidate
technologies to understand adaptability to InSAR as well as other planned missions
such as Aquarius, WSOA, Hydros and potentially UAV SAR. Based on the results of
this workshop, the development of the following radar electronics prototypes was
initiated to raise the TRL: 1) L-band RF Transceiver; 2) AD-9858 NCO-based Digital
Chirp Generator;

3) Atmel TS8388 Analog-to-Digital Converter and 1:8 Demux;
#########################################
10 bit 2.2 gigasamples SiGE

4) Xilinx
FPGA-based Block Floating Point Quantizer (BFPQ). In addition, the instrument
architecture has been refined to utilize the new hardware technologies.


Table 4-1. Radar Instrument Characteristics
Item Value/Summary
Sensor type Synthetic aperture radar
Frequency and polarization L-band single-polarization (HH)
Signal-to-noise ratio Noise equivalent sigma naught less than –24 dB
Swath width Larger than 340 km (viewable) to obtain global access
Bandwidth 80 MHz (maximum) and split spectrum capability to perform two subbands
processing for ionospheric correction
Instrument modes Stripmap (3 possible beams), High-Resolution and ScanSAR
Antenna aperture 13.8 m x 2.5 m (with distributed T/R modules)
Antenna incidence angle From 20-deg to 40-deg (electronic beam steering)
Transmit power 3.5 KW
Antenna structure Deployable
Data acquisition duty cycle 10 min/orbit average (200 W average power per orbit)
Radar electronics redundancy Full redundancy (with cross-strapping) of radar electronics for 5-year
mission lifetime
Instrument mass 600 kg including 30% contingency
Instrument DC power 1800 W peak (during data take) including 30% contingency
Instrument data rate 130 Mbps average

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4809
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 18:23. Заголовок: High-Resolution Mode..


High-Resolution Mode: The High-Resolution Mode is an 80 MHz mode that trades
swath coverage for increased resolution (10 m). One of seven beams may be chosen
in this mode; each with a swath width of ~40 km. Operation in this mode would be in lieu
of the primary 35 m resolution Stripmap Mode and would be performed intermittently at
the request of the Science Team when targets of interest requiring higher resolution are
identified

The current InSAR baseline eight-day sun-synchronous orbit at 760 km altitude yields a
separation of ~340 km at the equator between adjacent nadir tracks, as shown in the
following figure. In order to meet the requirement for complete global access the InSAR
Payload System will be designed such that the accessible area (viewable swath) is
greater than or equal to 340 km.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4810
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 19:15. Заголовок: http://www.fujitsu.c..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4813
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.10.10 20:33. Заголовок: http://i.cmpnet.com/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4818
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 19.10.10 18:10. Заголовок: Multiple A/Ds versus..


Multiple A/Ds versus a single one: pushing high-speed A/D converter SNR beyond the state of the art
Thomas Neu and Grant Christiansen, Texas Instruments. Inc.

7/4/2007 5:54 PM EDT
(Note: an edited version of this article appeared in Planet Analog magazine, June 24, 2007. This online version includes formulas and derivations that did not appear in the print version.)


The wireless communications field is constantly demanding faster and higher resolution high-speed data converters to enable them to process more bandwidth (allowing more channels) with greater resolution. One way to further advance state-of-the-art analog-to-digital converters (ADC) is to average multiple high-speed ADCs to increase the dynamic range. With two ADCs, for example, the overall signal-to-noise ratio (SNR) can be improved by up to 3 dB; with three converters, it can be as much as 4.8 dB.
--------------------------------------------------------------------------------------------


Theoretically, the SNR can be increased by 3 dB (one-half-bit) with two different methods.
-------------------------------------------------------------------------------------------------------
One option is to double the sampling rate and digitally filter the output (e.g., with an FIR decimation filter).

The second option is to parallel two ADCs and simply average the digital output.

At times, doubling the sampling rate is the less desirable option because faster ADCs may not yet be available. They may also start out with a lower SNR and often times are higher power than two slower ADCs. Furthermore, a faster sampling clock with low jitter is required.
--------------------------------------------------------------------------------------------------------------------------------------------------


This article shows the actual results of combining three TI ADS5546 converters (14-bit, 190 Msps), using the second option of paralleling the ADCs, and it addresses the clock jitter requirement which engineers face with the implementation.
------------------------------------------------------------------------------------------------------



Setup
The concept of averaging the output of separate ADCs for SNR improvement was verified using three ADCs tied to an FPGA, which then outputs the conversion results of each individual ADC or two or three ADCs averaged together, Figure 1.

By using three ADCs instead of one, the SNR ideally improves by 4.8 dB, as derived below, which boosts the 14-bit ADC (SNR ∼74dB) to a 16-bit ADC
##################################################################################################
level (SNR ∼79dB).
#############

Ostanetsja li wse ostlanoe ? W predleax trebowanij

Esli da .to mozno wzjaz 3 12 bit po 1-1.8 gsps i poluchit 14 bit s input frequency 1000 mgz


AFAR PAK FA/ F-22 imeet 2 rezima SAR ,gde trebuetsja takaja polosa pri neuschej 8 -10 ghz

1. SAR s rar .sposobnostju 250 mm na suche
2. Poisk periskopa PLA

Odno preobrazowanei chastoti i srazu AZP

Po nekotorim publichnim dannim w PAtriot PAC-3 16 bit AZP



The analog input signal was split and fed into three ADCs which were sampled with a common clock source. An FPGA performed the averaging function as well as a level translation of the digital output from DDR-LVDS to LVTTL (double-data-rate, low-voltage differential signal to low-voltage TTL).





Figure 1: Block Diagram of System to Average Multiple ADC Outputs
(Click to enlarge image)


The averaging technique reduces uncorrelated white noise, but has no effect on distortions inherent to the ADC design that might be common to all three ADCs. If, for example, the ADC creates a large third-order distortion product, it will show up in each ADC used and averaging won't reduce it. Therefore, averaging only improves SNR, but not spurious free dynamic range (SFDR).



The formulas and derivations used to determine the maximum SNR gain for the two methods described above (doubling the sample rate and averaging multiple ADCs) are discussed in the addendum at the end, "Theory."



Measurements
In order to verify the SNR gain, a board was designed containing three ADS5546 ADCs (14-bit, 190 Msps) and an FPGA that was used to perform a 3:1 averaging function. Using two or three standalone ADC evaluation modules (EVM) for this experiment usually doesn't work as well, because noise coupled into the cable assembly is correlated and, therefore, doesn't average out. Furthermore, if the cables are not matched very well, skew between ADCs adds phase mismatch and further degrades the overall SNR.



Unfortunately, the chosen input matching network design was not optimized. The trace impedance was not adjusted properly to the transformer and the split input traces were not properly matched. Due to this input mismatch, the input signal was attenuated at frequencies above 60 MHz with one exception. Around 150 MHz, the input circuitry seemed to work very well. Therefore, some of the measurements were taken with an input amplitude as low as -6 dB, and were mathematically adjusted to -1 dB full scale (FS) afterwards in the following manner.



First, with only one ADC active, the SNR performance was measured and compared to the ADS5546 data sheet performance at the lower input amplitude. Then the measurement with three ADCs active was adjusted by the difference. This adjustment seems justified as the 150 MHz data point is right in line with the resulting values, Figure 2.





Figure 2: SNR Comparison between ADS5546 Data Sheet Values, Single ADC and Triple ADC
(Click to enlarge image)


The adjusted measurements show a consistent 4-or-greater dB improvement across various input frequencies when comparing it to 'single ADC' data. Even at the higher input frequencies, the measured and calibrated values within one-half dB of the theoretical values with the exception of device number three. The noticeable SNR roll-off is due to the clock-jitter limitation which is prevalent in any ADC, as derived in the next section.



Clock jitter requirements
The final SNR at the output depends on the input frequency and is primarily limited by the thermal noise of the ADCs and the aperture jitter of the sampling clock.







As derived earlier, averaging the SNR of three ADCs improves all uncorrelated noise sources by ∼4.8 dB which applies to the thermal noise term, as well as the internal aperture jitter of the ADC.


The ADS5546 data sheet lists the following specifications:


•Thermal noise ∼74 dB (=SNR at low input frequency where SNR is thermal noise limited)
•Aperture jitter ∼150 femtoseconds (fs)



Therefore, when averaging the outputs of three ADCs sampling the same signal, the overall thermal-noise contribution is reduced from 74 dB to 78.8 dB and the ADC aperture uncertainty from 150 fs to 86 fs (1.50 fs · 10-4.8/20).


The sampling jitter comprises the internal aperture jitter of the ADC and the jitter of the external clock source (common to all three ADCs when averaging).


http://www.eetimes.com/design/automotive-design/4009960/Multiple-A-Ds-versus-a-single-one-pushing-high-speed-A-D-converter-SNR-beyond-the-state-of-the-art<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4821
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:03. Заголовок: http://www.schoenduv..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4822
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:11. Заголовок: http://www.ausairpow..


http://www.ausairpower.net/APA-Zhuk-AE-Analysis.html<\/u><\/a>

The new radar would use a new antenna and Analogue/Digital Converter (ADC) design,
########################################################
a new exciter/driver stage, but retain the existing receiver chain, processors, and coherent oscillator. Intended improvements for a production design include better processing and a broadband programmable master oscillator module. The latter is to provide many of the advanced capabilities seen in the latest Western AESAs.


Zhuk AE Design Philosophy - A Radar Engineering Perspective

Phazotron's engineers have provided some excellent insights into the design philosophy and achievable performance, and performance growth, in the Zhuk AE design [click for more ...]. Less fortunately, the original works were not well translated into English, seeing much technical language translated improperly, making the original work less than comprehensible to readers without exposure to radar engineering.

The starting point for the Zhuk AE design was the existing Zhuk MF, as Phazotron's engineers correctly assessed that the cost and risk of an entirely new design would be too great. In this respect they followed the model used by Raytheon in the APG-79 and Northrop-Grumman in the APG-80, rather than the 'all new' approach seen with the Northrop Grumman APG-77. The aim was to re-engineer the PESA design for a new liquid cooled AESA, retaining as much of the PESA design as was feasible.


Phazotron appear to be exploring digital beamforming techniques in what Chief Designer Dolgachev describes as a two stage processing scheme, with initial beamforming performed in the AESA, and additional beamforming in the digital receiver, downstream of the ADC stage.
#################################################################################
Adaptive nulling of mainlobe jammers is also raised as a benefit of the AESA design.


Other important determinants of performance such as oscillator parameters and ADC dynamic range and noisiness
#########################################################################
have been conveniently omitted from the public disclosure.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4823
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:22. Заголовок: http://www.analog-eu..


http://www.analog-europe.com/en/solutions_for_time_interleaving_ultra-high-speed_adcs_at_the_pcb_level?cmp_id=7&news_id=221601117<\/u><\/a>

Technology News
Solutions for time interleaving ultra-high-speed ADCs at the PCB level
November 04, 2009 | | 221601117
This article explores the inherent technical challenges associated with time interleaving ADCs and provides useful system-design guidelines.
Synchronously sampling analog signals with time-interleaved analog/digital converters (ADCs) at billions of times per second is a considerable technical challenge, and requires very carefully designed mixed-signal circuits. In essence, the goal of time interleaving is to multiply the sampling frequency by the number of converters used, but without impacting resolution and dynamic performance.

This article explores the inherent technical challenges associated with time interleaving ADCs and provides useful system-design guidelines. New and innovative component features and design techniques that address the known issues are presented. Measured FFT results from a 7 Gsps (gigasamples per second), two-converter chip 'interleaved solution' are provided. Finally, applications-support circuitry necessary to achieve high performance is described, including clock sources and drive amplifiers.

Increasing need for higher sampling speeds
When and why is it an advantage to increase sampling frequency? There are several answers to this question. Essentially an ADC's sampling speed directly determines the instantaneous bandwidth that may be digitized in one sampling instant. The Nyquist and Shannon sampling theorems state that the maximum available sampling bandwidth (BW) is equal to half the sample frequency (Fs).

A 3-Gsps ADC enables 1.5 GHz analog-signal spectrum to be sampled in one sampling period. Doubling the sampling speed also doubles the Nyquist bandwidth to 3 GHz. The resultant multiplication in sampling bandwidth gained by time interleaving is beneficial in many applications.

For example, radio-transceiver architectures can increase the number of information signal carriers, and therefore, system data throughput can be expanded. Increasing Fs also improves resolution in laser imaging detection and ranging (LIDAR) measurement systems,
########################################################################
which operate on the principle of time of flight (TOF). The uncertainty in TOF measurements can be reduced by decreasing the effective sampling-clock period.

Digital oscilloscopes also require high Fs to input frequency (FIN) ratios for accurately capturing complex analog or digital signals. Fs must be several multiples of FIN(max) to capture the harmonic components of FIN. For example, if the oscilloscope sampling frequency is not sufficiently high, a square wave will appear sinusoidal if the higher-order harmonics are outside the Nyquist bandwidth of the ADC.

Figure 1 illustrates the benefit in doubling sampling frequency in an oscilloscope front-end. The 6 Gsps sampled waveform is a much more accurate representation of the sampled analog input. Many other test instrumentation systems, such as mass spectrometers and gamma ray telescopes, depend on high over-sampling to FIN ratios for pulse-shape measurement.

Figure 1: Time-domain measured plots of a 247.77 MHz signal sampled at 3 Gsps and 6 Gsps.
(Click on image to enlarge)

There are also other advantages gained by increasing sampling frequency. Over-sampling signals also enables processing-gain benefits in the digital domain with the use of digital filtering. This is because the ADC noise floor can be spread over a larger output bandwidth. Doubling the sampling rate, for a fixed input bandwidth, results in a 3 dB improvement in dynamic range. Every further doubling of the sampling frequency provides an additional 3 dB of dynamic range.

Challenges with time interleaving
The main challenges with time interleaving are accurate phase alignment of sampling-clock edges between channels, and compensating for manufacturing variations that inherently occur between ICs. Accurately matching the gain, offset and clock phase between separate ADCs is very challenging, especially as these parameters are frequency dependant. Unless precise matching of these parameters is achieved, dynamic performance and resolution will be reduced. The three main sources of error are illustrated in Figure 2.


Figure 2: Gain, offset and timing errors introduced by interleaving ADCs
(Click on image to enlarge)

Sampling-clock phase adjustment
Generally, a two-channel interleaved-converter system requires that the ADC input-sampling clocks are time shifted by ½ clock period. However, the National Semiconductor ADC083000 ADC architecture uses on-chip interleaving and operates with a clock frequency equal to half the sample rate, i.e. 1.5 GHz to achieve 3 Gsps. Therefore, for a two-channel system employing two ADC083000's, the ADC input sampling clock edges must be time shifted by ¼ clock period or 90° with respect to each other. This corresponds to 166.67 picoseconds for a 1.5 GHz clock.

The clock-signal trace lengths can be calculated to meet, with some accuracy, the ¼ clock-period phase shift. For FR-4 PCB material, a signal propagates at 20 cm/ns, i.e. 1 cm in 50 ps. For example, if the clock trace to one ADC is 3 cm longer than the other, this will result in a 150 ps phase shift. The challenge is to accurately meet the additional 16.67 ps time shift.

The ADC083000 has an integrated clock-phase adjustment feature that allows the user to add a delay to the input-sampling clock to shift its phase, relative to another ADC's sampling clock. The clock phase of the ADC can be adjusted manually through two internal registers over an SPI bus. The phase shift is only possible in one direction, increasing delay. The designer should determine which of two discrete ADC's is "ahead" and adjust its phase so that its sample edges are 90° between the other ADC's sample edges. Sub-picosecond adjustment resolution is provided.

Channel-to-channel gain and offset matching
In a two-converter interleaved system, the error voltages generated by channel gain mismatches result in image spurs that are located at Fs/2 – FIN and Fs/4 ± FIN (assuming the input signal is within the first Nyquist band). An 8-bit converter has 28 or 256 codes. Assuming the converter full scale input range is 1 Vp-p, the LSB size is:

1 V/256 = 3.9 mV.

We can then calculate that the required gain matching for ½ LSB accuracy is 0.2%.

The input full-scale voltage or gain of the ADC083000 can be adjusted linearly and monotonically with a 9-bit data value. The adjustment range is ???20% of the nominal 700 mVp-pdifferential value, or 560 mVp-pto 840 mVp-p.

840 mV – 560 mV = 280 mV.
29 = 512 steps. 280 mV/512 = 546.88 μV

This degree of fine adjustment allows greater than 0.2% gain matching as required above.

Offset mismatching between adjacent channels generates an error voltage that results in an offset spur that is located at Fs/2. Since the offset spur is located at the edge of the Nyquist band, designers of two-channel systems can typically plan their system frequency around it, and focus their efforts on gain and phase matching.

However, let us assume that the required offset matching is also ½ LSB. The input offset of the ADC083000 can be adjusted linearly and monotonically from a nominal zero offset to 45 mV of offset with 9-bit resolution. Thus, each code step provides 0.176 mV of offset and the 9-bit resolution enables ½ LSB accuracy.

Synchronization of digital outputs
Synchronizing the output data streams from both ADCs is essential to realize the combined sampling speed and bandwidth. In other words, meaningful data capture is not possible if loss of output synchronization between individual converters occurs. The gigasample-range ADCs demultiplex ('demux') the output data to reduce the digital output data rate. The user has the option of 'demuxing' the data rate by 2 or 4, depending on the data-handling capacity of the FPGA technology used.

The output capture clock (DCLK) is also divided and can be configured in SDR or DDR mode. However, demuxing introduces an additional consideration because there is now added uncertainty regarding the correspondence between the input sampling clock and the DCLK output of each ADC.

To overcome this, the ADC083000 has the capability to precisely reset its sampling clock input to a DCLK output relationship, as determined by the user-supplied DCLK_RST pulse. This allows multiple ADCs in a system to have their DCLK (and data) outputs transition at the same time with respect to the shared input clock they use for sampling, enabling the synchronization between multiple ADCs.

Digital interleaving techniques
Analog calibration is a proven method to deliver high dynamic range, and highly integrated monolithic solutions and the integrated clock phase, gain and offset adjustment features described have proven to provide a high level of accuracy.

Some potential alternatives to analog calibration techniques are digital correction algorithms that operate on the interleaved data. These engines seek to correct data converter mismatches in the digital domain without requiring any analog offset, gain, or phase correction. Ideally, these algorithms can operate independently without any calibration or prior knowledge of the input signal. Also, the time to converge on the digital offset, gain, and phase correction factors is a key system metric.

One digital post-processing engine that has been demonstrated to meet these criteria, is an algorithm developed by SP Devices, Inc. SP Devices' ADX technology continuously provides a background estimate of the gain, offset and time skew errors of the ADCs without the need for any special calibration signal or post-production trimming. This algorithm has been demonstrated to correct both static and dynamic mismatch errors.

The ADX technology estimates the error and reconstructs the signal with all mismatch errors suppressed. The error-correction algorithms of the IP-core operate effectively independent of input signal type. The result of this digital signal processing is that the time-interleaved spectrum out of the ADX core will have no apparent mismatch-related interleaving distortion spurs.

The SP Devices algorithm has been demonstrated on a reference board featuring two ADC083000 3 Gsps, 8-bit ADCs from National Semiconductor. The data converters are interleaved using the ADX technology embedded in the on-board FPGA. The block diagram of this 7 Gsps digitizer card is shown in Figure 3.


Figure 3: Block diagram of ADQ108 system with LMX2531 and LMH6554
(Click on image to enlarge)

Figure 4 is a performance plot of the output spectrum from the SP Devices ADQ108 data acquisition card. It should be noted that that peak spurious components are due to harmonic distortion and the interleaving spurs have been dramatically reduced. (Further details on the data acquisition card can be found here.)


Figure 4: Combined ADC spectrum with ADX implemented
(Click on image to enlarge)

Ultra-high-speed ADC support circuitry
In order to achieve the high level of performance that can be attained using data converters such as the ADC083000, it is necessary to ensure that the supporting circuitry has performance comparable to the data converter itself. Key elements of support circuitry include:

1. High-performance, low-jitter clock sources
2. Highly linear, low-noise amplifiers or baluns to drive the ADC inputs

The LMX2531 or LMX2541 clock synthesizers are recommended for generating the low-jitter ADC clock signal and LMH6554 for driving the ADC analog inputs.

The LMX2531 integrates a PLL and VCO and provides a noise floor better than –160 dBc/Hz. The IC is available in several different versions to accommodate different frequency bands from 553 MHz to 2790 MHz.

For even better high-input-frequency SNR performance, the lower phase noise LMX2541 is recommended as a suitable clock source. The LMX2541 provides less than 2 milliradians (mrad) root-mean-square (rms) noise at 2.1 GHz and 3.5 mrad rms noise at 3.5 GHz. The LMX2541's PLL offers a normalized noise floor of –225 dBc/Hz and can be operated with up to 104 MHz of phase-detector rate (comparison frequency) in both integer and fractional modes.

The LMH6554 is the industry's highest-performance differential amplifier. Its low-impedance differential output is designed to drive ADC inputs and any intermediate-filter stage. This wideband, fully differential amplifier drives 8- to 16-bit high-speed ADCs with 0.1 dB gain flatness up to 800 MHz, SFDR of 72 dBc at 250 MHz, and low input-voltage noise performance of 0.9 nV/sqrt Hz.

The LMH6554 delivers 16-bit linearity up to 75 MHz when driving 2 Vp-p into loads as low as 200 Ω. With external gain-set resistors and integrated common-mode feedback, the LMH6554 can be used in differential-to-differential or single-ended-to-differential configurations. The amplifier provides large signal bandwidth up to 1.8 GHz, 8 dB noise figure and a slew rate of 6200 V/μs.

Figure 5 shows a typical block diagram implementation using the above-mentioned supporting components.


Figure 5: Typical system block diagram using high-end components
(Click on image to enlarge)

Summary
The challenges associated with interleaving high-speed ADCs and several approaches to addressing these issues have been presented. Maintaining excellent dynamic performance beyond 6 Gsps is now possible due to advancements in interleaving methodologies, low-jitter clock sources and high-performance amplifiers.

About the author
Paul McCormack is a senior applications engineer in National Semiconductor Corporation's High-Speed Signal Path Group in Europe. He received his Masters degree in Electrical and Electronic Engineering from the Queen's University of Belfast.




Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4824
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:25. Заголовок: K stat'e wische ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4825
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:29. Заголовок: There are also other..


There are also other advantages gained by increasing sampling frequency. Over-sampling signals also enables processing-gain benefits in the digital domain with the use of digital filtering. This is because the ADC noise floor can be spread over a larger output bandwidth.

Doubling the sampling rate, for a fixed input bandwidth, results in a 3 dB improvement in dynamic range. Every further doubling of the sampling frequency provides an additional 3 dB of dynamic range.
#########################


Challenges with time interleaving
The main challenges with time interleaving are accurate phase alignment of sampling-clock edges between channels, and compensating for manufacturing variations that inherently occur between ICs. Accurately matching the gain, offset and clock phase between separate ADCs is very challenging, especially as these parameters are frequency dependant.
###############################################

Unless precise matching of these parameters is achieved, dynamic performance and resolution will be reduced. The three main sources of error are illustrated in Figure 2.
###############

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4826
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:34. Заголовок: 4*14 bit ADC interle..


4*14 bit ADC interleaved

http://spdevices.com/index.php/products2/adx4-evm-1600-14<\/u><\/a>

Single-tone at 62 MHz. Fs=1.6 GS/s, SFDR=88 dBc, ENOB=11.1 bits.

ADX EVM is a series of evaluation cards that demonstrate the power of SP Devices interleaving algorithms in various environment and applications. The ADX EVMs show how distortions related to interleaving such as time-skew, offset- and gain- errors are corrected. Corrections are made transparently and in real time without any need of calibration signals. The correction algorithm support a resolution of up to 16 bits, with a preserved SFDR of up to 95 dB, depending on the properties of the specific ADC array.

The ADX EVM evaluation card is equipped with four, 14-bit, interleaved AD-converters demonstrating the capabilities of SP Devices IP block for interleaving of high-speed AD-converters. ADX EVM uses a Xilinx V5 series SX 50T FPGA for the signal processing of the interleaving algorithms and for storing of data batches used for evaluation of the algorithm. The card has a USB 1.1 port for communication with the FPGA and a on board memory of 64 kSample.

Setup and control of the evaluation card is made by the included software ADCaptureLab. The software contains useful analysis tools such as time series and FFT plots to facilitate the evaluation of the IP-block for the target application.

The ADX EVM is delivered with a time limited license and is intended for evaluation purposes only. The ADX EVM may also be delivered as part of an ADX Design Kit for FPGA IP as a platform for initial development.

#####################

US Navy Chooses the ADQ412 TIGER Digitizer
Thursday, 16 September 2010 17:00

With its unique combination of high sample rate and high resolution, the ADQ412 TIGER was the natural choice for the US Navy. Boasting an impressive sample rate of 3.6 Giga samples per second (GSPS) and 12 bits vertical resolution the Naval Surface Warfare Center Panama City Division (NSWCPCD) found its ideal digitizer candidate in the ADQ412 TIGER.

Visit the ADQ412 TIGER product page by clicking here, and to read more from the US Navy, click here.

http://spdevices.com/index.php/company/news-archive/159-us-navy-chooses-spd<\/u><\/a>

http://spdevices.com/index.php/adq412tiger<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4827
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 12:38. Заголовок: DX - Interleaving Te..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4828
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 18:57. Заголовок: 1. the goal of time ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4829
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 20:30. Заголовок: Manuscript received ..


Manuscript received September 15, 1998.
This work was supported in part by US Air Force and ONR.
#####################################

Mnogo russkix imen ,mozet w Rossii esche chto-to ostalos ....


http://www.hypres.com/papers/ECB-01.pdf<\/u><\/a>

In our experiments we have achieved full functionality of
several 14-bit ADC chips using two-channel race arbiters at
speeds exceeding 10 GS/s. Fig.6 shows oscilloscope photos of
the outputs of bits 1-8 in such an ADC operating at 11.5 GS/s
with and without dither. (The dither is a low-amplitude
sinewave having the ADC output sampling frequency, so it is
completely suppressed by the decimation filter). It is seen that
dither has a profoundly positive effect on the ADC operation
for slowly changing signals

[1] S.V. Rylov, “Novel architecture for superconducting flux-quantizing A/D
converters,” Extended Abstracts of ISEC'93, Boulder, Colorado, USA,
pp. 112-113, 1993.
[2] S.V. Rylov and R.P. Robertazzi, “Superconducting high-resolution A/D
converter based on phase modulation and multi-channel timing
arbitration,” IEEE Trans. on Appl. Supercond., vol. 5, pp. 2260-2263,
June 1995.
[3] S.V. Rylov, L. A. Bunz, D. V. Gaidarenko, M. A. Fisher, R. P. Robertazzi, and
O. A. Mukhanov, “High resolution ADC system,” IEEE Trans. Applied
Superconductivity, vol. 7, pp. 2649-2652, Jun. 1997.
[4] V.K. Semenov, Yu.A. Polyakov, and A. Ryzhikh, “Decimation filters
based on RSFQ logic/memory cells”, In: Extended Abstracts of ISEC’97,
Berlin, Germany, pp. 344-346, June 1997
[5] Bob Walden, Hughes Research Labs, walden@hrl.com

The authors would like to thank O.A. Mukhanov and K.K.
Likharev for useful discussions, Yu.A. Polyakov for help in
testing and HYPRES fabrication team for making the ADC
chips.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4830
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 20.10.10 20:42. Заголовок: TRW continues the BM..


TRW continues the BMDO-funded program for the development of infrared (IR) focal plane array (FPA) imaging signal processing circuits, built in NbN and operating at 10 K. The BMDO project is part of the organization's effort to develop an integrated high-performance sensor with higher sensitivity for missile surveillance by developing and integrating high-performance superconducting ADCs and focal plane arrays.

An ADC chip and digital signal processing chip were mounted on a 1.25 inch multi-chip module (MCM) with high bandwidth, low impedance interconnect (s. Fig. 15). The populated MCM is designed to be installed into a module housing for operation with the cryogenic IR FPA. A 12-bit NbN SFQ counting ADC, previously used in a single chip version of the IR focal plane array sensor test system, was now implemented in an improved NbN process which includes a ground plane. Considerable attention has been focused on reducing parasitic inductance to compensate for the high characteristic inductance of the NbN films. These design improvements increase operating margins and circuit yield and make the ADC more robust in the presence of external system noise. Data from a bit-serial subtraction circuit to be used for pixel-by-pixel background subtraction were also presented.

The simultaneous high performance and ultra low power dissipation of superconducting circuits enables a long wavelength IR focal plane array sensor architecture featuring A/D conversion and digital signal processing in the cryogenic space very near, or on the focal plane. Sensors designed to detect long wavelength IR radiation (~ 25 µm) must operate at temperatures below 15 K in order to have low enough detector thermal noise. This requirement for cryogenic operation means an existing long wavelength sensor system can accommodate NbN superconducting circuits operating at 10 K without requiring a major system redesign. Performing A/D conversion followed by digital signal processing to enhance the signal-to-noise ratio and reduce the total data rate results in significant system-level payoff.

TRW previously operated a 10 K, 12-bit, 2 MSps NbN ADC as part of a long wavelength IR focal plane array sensor demonstration (ISEC’97). In that demonstration, a 128 x128 long wavelength IR focal plane array was read out at 100 frames per second, producing IR images of room temperature objects against a cooled background, with all the data converted by a single NbN ADC dissipating 0.3 mW.

The next step in the technology development is to demonstrate a system in which the first of the appropriate digital signal processing (DSP) functions is implemented in NbN circuitry and integrated with the ADC in the 10 K package. The circuit and packaging results reported at ASC’98 represent significant progress toward that goal.



http://wwwifp.fzk.de/ISAS/Hottline/jun99/ADC.htm<\/u><\/a>


Northorp Grumman presented at ASC’98 sigma-delta architectures using large (>100) oversampling ratios to give signal-to-noise ratios of greater than 100 dB in simulation. Three distinct designs, using two distinct mechanisms for feedback were presented. All of the designs use only shunted junctions, and are therefore compatible with HTS SNS junctions of moderate IcRN products (~ 300 µV).

The delta-sigma (D -S ) architecture allows for high dynamic range at large oversampling ratios. By adding feedback loops to the modulator, the dynamic range for a given oversampling ratio can be increased. Northorp Grumman chose to design two-loop modulators because of their intrinsic stability and ability to meet future radar specifications with a minimum of Josephson junctions.

Three different two-loop modulators were described, each different in its feedback mechanism. One is based upon the concept of quantized integer feedback and three use "feedforward" signal for the second loop of the modulator. Each modulator is capable of operating at 10 GHz clock rates, necessary for the high dynamic range (> 100 dB SNR) needed for future naval and airborne ADCs.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4832
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 14:26. Заголовок: a massively interle..


a massively interleaved ADC

1. clock jitter management issue

2. neobxodimo imet w ADC

a.offset adjust
b.gain adjust
c.apperture delay fine adjust

http://www.atmel.com/journal/documents/issue6/Pg43_48_CodePatch.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4833
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 15:44. Заголовок: srawnitelnij anali p..


srawnitelnij anali po cenam ot razrjadnosti TI

ADS5485 16 bit ,200 msps.SINAD 73.7db,ENOB-11.95,SFDR -87db ,129 $

ADS5474 14 bit,400 msps ,SINAD 68.9 db,ENOB -11.2 ,SFDR -86 gb ,200.65$

ADS5400 12 bit,1000 msps,SINDA-58 db,ENOB-9.3 ,SFDR -75 db,775$

T.e. skorost oceniwaetsja wische chem razrjadnost w neskolko raz
********************************************************

http://focus.ti.com/lit/ds/symlink/ads5400.pdf<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4840
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 18:35. Заголовок: http://www.astro.cal..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4841
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 20:47. Заголовок: http://www.youtube.c..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4842
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 21:06. Заголовок: in a flash ADC the n..


in a flash ADC the number of comparators increases by a factor of 2 for every extra bit of resolution; simultaneously, each comparator must be twice as accurate
#########################################################################################################

Flash/ili paralelnij) Max109 2.2 gigasamples ,8 bit ,256 comparators ,6.8 watt

wozmozno interleaving ( 2- 4 ?)

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4844
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 22:05. Заголовок: powtor High resolu..


powtor

High resolution is particularly important in applications like imaging radar that must discern small objects close by
#########################################################################
large objects, or in signals intelligence that must be able to characterize even the faintest radio signals in the presence of many other signals and electronic noise.
############################

Noise and distortion rejection is measured in two ways. The first is spurious noise dynamic range (SNDR), and the second is signal to noise ratio (SNR), both of which are measured in decibels, or dB. The higher the dB level of these two measurements, the better the A/D or D/A is at detecting and characterizing weak signals that may be important. Strong noise and distortion rejection is particularly important for applications like signals intelligence, radio communications, or sophisticated radar jammers.


he larger the application, the more the designer concentrates on pure A/D and D/A converter performance, rather
###########################################################################
than on device size and power consumption says Pam Aparo,
#########################################
marketing manager for device maker Analog Devices High-Speed ADC Products segment in Greensboro, N.C. "Most of the requirements we get break down into 'the sky's the limit' in the performance and power that our users need," she says. "A ground-based radar is not concerned about power; they want all the performance they can get.
#######################################################################
With missiles and communications and things people have to carry, it has to be a lightweight system, so we have to get the size and power down."
#####################


No A/D or D/A converter -- at least not yet -- can be all things to all people. One rule of thumb is the faster the
#########################################################################
device, the lower its resolution and noise rejection. On the other hand, the devices with the finest resolution and noise
##########################################################################
rejection typically are not the fastest devices. It all depends on the application and the designer's needs.
######################################################################

One kind of radar jammer, for example, might have a high priority on speed, at the expense of resolution.
######################################################################
Above all, this system may need to detect radar signals quickly so it wastes no time in overwhelming the enemy
###########################################################################
signal with jamming energy. In this application, it is not so important to characterize the radar signal with fine
#######################################################################
resolution as it is to detect the radar signal quickly and jam it.
########################################

Signals intelligence and radio communications, on the other hand, put a priority on high resolution to detect and
##########################################################################
classify weak signals of interest -- particularly when the desired signals are alongside strong signals or strong sources of noise.
########


A/D converter manufacturers like National Semiconductor in Santa Clara, Calif., Intersil, and others are pursuing interleaving technology, while others around the industry do not give this design approach much credence.
######################################################################
"People have tried ganging A/Ds together," says Rodger Hosking, vice president of signals intelligence and software defined radio processing specialist Pentek Inc. in Upper Saddle River, N.J. "In practice it is very difficult, and almost never works very well."


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4845
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 22:11. Заголовок: Providers of analog-..


Providers of analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)



Analog Devices Inc.
Norwood, Mass.
781-329-4700
www.analog.com

Atmel Corp.
San Jose, Calif.
408-441-0311
www.atmel.com

Austin Semiconductor Inc. (ASI)
Austin, Texas
512-339-1188
www.austinsemiconductor.com

Cirrus Logic Inc.
Austin, Texas
512-851-4000
www.cirrus.com

e2v
Chelmsford, England
+44 (0)1245 493493
www.e2v.com

Hypres Inc.
Elmsford, N.Y.
914-592-1190
www.hypres.com

Intersil Corp.
Milpitas, Calif.
408-432-8888
www.intersil.com

Linear Technology Corp.
Milpitas, Calif.
408-432-1900
www.linear.com

Maxim Integrated Products Inc.
Sunnyvale, Calif.
408-737-7600
www.maxim-ic.com

Maxwell Technologies Inc.
San Diego, Calif.
858-503-3300
www.maxwell.com

Microchip Technology Inc.
Chandler, Ariz.
480-792-7200
www.microchip.com

National Semiconductor
Santa Clara, Calif.
408-721-5000
www.national.com

QP Semiconductor
Santa Clara, Calif.
408-737-0992
www.qpsemi.com

Schoenduve Corp.
San Jose, Calif.
650-962-8330
www.schoenduve.com

STMicroelectronics Inc.
Geneva, Switzerland
+41 22 929 29 29
www.st.com

SUMMIT Microelectronics Inc.
Sunnyvale, Calif.
408-523-1000
www.summitmicro.com

QualCore Logic Inc.
Sunnyvale, Calif.
408-541-0730
www.qualcorelogic.com

Rohm Semiconductor USA LLC
San Diego, Calif.
858-625-3630
www.rohmelectronics.com

Teledyne Scientific & Imaging LLC
Thousand Oaks, Calif.
805-373-4545
www.teledyne-si.com

Texas Instruments - Semiconductor Products
Dallas, Texas
972-644-5580
www.ti.com

Universal Semiconductor Inc.
San Jose, Calif.
408-436-1906
www.universalsemiconductor.com

Wavefront Semiconductor
Cumberland, R.I.
401-658-3670
www.wavefrontsemi.com

Wolfson Microelectronics Plc.
Edinburgh, Scotland
+44 (0) 131 272 7000
www.wolfsonmicro.com

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4846
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 22:18. Заголовок: powtor ot National a..


powtor ot National about 3.6 gsps/12 bit interleaved in one chip

Of course, to get these very high speeds you can time interleave multiple converters. One competitor has interleaved four 550 MSPS ADCs to get to 2 GSPS but this is quite a complex solution. It is difficult to design this at board level and it consumes quite a lot of power. In half the board area (which has cost implications) we can achieve almost twice the speed and the power consumption is half. And we have one chip compared to four so we offer a lot of advantages for designers.

http://www.analog-eetimes.com/en/12-bit-adc-paves-the-way-for-new-generation-of-software-defined-radio-solutions.html?cmp_id=7&news_id=222900778&vID=11<\/u><\/a>


An example is with the LIDAR laser range measurement systems which are used in many industrial and military applications. With laser measurement systems the accuracy of these is determined by the sampling speed of the ADC. If you can increase the speed by three times then you have three times more accuracy of the distance measurement. You are enabling highly accurate measurement equipment by relating it s performance to the sample speed of the ADC.


Sample rate is key and we are going up to sample rates of 3 GSPS which is miles ahead of what's available today. Today you can only do 1 GSPS at 12-bits now we have pushed that the whole way up to 3.6 GSPS which would have
###########################################################################
been thought impossible a few years ago. This allows you to do a bandwidth instantaneously at 1.8 GHz which is huge
############################################################################
and combining that with 12-bit dynamic range means you grab the attention of the communications market because
###########################################################################
with this much resolution you can do really useful work in communications systems, in military radar systems and in high-end test equipment.
####################
There is also the fact you can simplify architectures by eliminating and reducing components, reducing board area. There are also a lot less thermal problems and board design complexity. There is also the benefit that it offers low power consumption because this is a pure CMOS technology.


About Paul McCormack

Paul McCormack is the Marketing Manager for National Semiconductor's High-speed product group and is based at the company's European Headquarters in Furstenfeldbruck near Munich.



In addition to the ADC12D1800, National is also introducing two other members of its ultra high-speed ADC family: the ADC12D1600 with sampling speed up to 3.2 GSPS and the ADC12D1000 with performance up to 2.0 GSPS. All three PowerWise ADCs target wideband SDRs including radar, communications, multi-channel set-top box (STB), signal intelligence, and light detecting and ranging (LIDAR) applications.


Key Features of the ADC12D1x00 12-bit, Ultra High-Speed ADCs, include:

National’s 12-bit ADCs are supplied in a leaded or lead-free, 292-ball, thermally enhanced BGA package, and are pin-compatible with the ADC10D1000 and ADC10D1500 ADCs. The 12-bit ADCs run off a 1.9 V single supply and consist of two channels that can operate interleaved or as independent channels. They include circuitry for multi-chip synchronization, programmable gain and offset adjustment per channel. The internal track-and-hold amplifier and extended self-calibration scheme enable a flat response of all dynamic parameters for input frequencies exceeding 2 GHz, while providing a low 10-18 code error rate.

The ADC12D1800 provides sampling rates up to 3.6 GSPS, or dual-channel rates up to 1.8 GSPS. In addition to excellent noise floor, NPR and IMD performance, the ADC12D1800 offers 57.8 dB SNR, 67 dBc SFDR and 9.2 ENOB at 125 MHz. The energy-efficient design consumes only 2.05 W per channel.

The ADC12D1600 delivers single-channel sampling rates up to 3.2 GSPS, or dual-channel rates up to 1.6 GSPS. It features a -147.5 dBm per Hz noise floor, 52 dB NPR and -63 dBFS IMD. The ADC12D1600 consumes 1.9W per channel and offers 58.6 dB SNR, 68 dBc SFDR and 9.3 ENOB at 125 MHz.

The ADC12D1000 provides single-channel sampling rates up to 2.0 GSPS, or dual-channel rates up to 1.0 GSPS. The device features a -147.5 dBm per Hz noise floor, 52 dB NPR and -66 dBFS IMD. The ADC12D1000 consumes 1.7 W per channel and offers 59.1 dB SNR, 70.5 dBc SFDR and 9.5 ENOB at 125 MHz.

A space-qualified version of the ADC12D1x00 will be supplied in a hermetic 376 column, ceramic column grid array
##########################################################################
(CCGA) package that meets radiation levels of 120 MeV for single event latch-up and a total ionizing dose of 100 Krads (Si).
###############
The device is pin-compatible with the ADC10D1000QML 10-bit ADC.

Availability and Pricing

All three ADCs are sampling now, with production quantities available in the third quarter of 2010.

Non-flight prototyping units and evaluation boards in the CCGA package will be available in the third quarter of 2010.

Related links:

ADC12D1800

ADC12D1600

ADC12D1000

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4847
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 23:13. Заголовок: Texas instruments 4*..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4848
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.10.10 23:31. Заголовок: http://rfdesign.com/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4849
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 11:05. Заголовок: lutschij 16 bit 160..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4851
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 12:02. Заголовок: Waveform Variations ..


Waveform Variations by Mode.Although the specific waveform is hard to pre-

dict, typical waveform variations can be tabulated based on observed behavior of a number of existing A-S radar systems. Table 5.1 shows the range of parameters that can be observed as a function of radar mode. The parameter ranges listed are PRF, pulse width, duty cycle, pulse compression ratio, independent frequency looks, pulses per coherent processing interval (CPI), transmitted bandwidth, and total pulses in a Time-On-Target (TOT).

Obviously, most radars do not contain all of this variation, but modes exist in many fighter aircraft, which represent a good fraction of the parameter range. Most fighter radars are frequency agile since they will be operated in close proximity to similar or identical systems. The frequency usually changes in a carefully controlled, completely coherent manner during a CPI.8 This can be a weakness for certain kinds of jamming since the phase and frequency of the next pulse is predictable. Sometimes to counter- act this weakness, the frequency sequence is pseudorandom from a predetermined set with known autocorrelation properties, for example, Frank, Costas, Viterbi, P codes.16 A major difficulty with complex wideband frequency coding is that the phase shift- ers in a phase scanned array must be changed on an intra- or inter-pulse basis greatly complicating beam steering control and absolute T/R channel phase delay. Another challenge is minimizing power supply phase pulling when PRFs and pulsewidths vary over more than 100:1 range. MFAR systems not only have a wide variation in PRF and pulsewidth but also usually exhibit large instant and total bandwidth. Coupled with the large bandwidth is the requirement for long coherent integration times. This requirement naturally leads to extreme stability master oscillators and ultra low-noise synthesizers.44

http://www.scribd.com/doc/17533868/Chapter-5-Multi-Functional-Radar-Systems-for-Fighter-Aircraft<\/u><\/a>

5.12

MULTIFUNCTIONAL RADAR SYSTEMS FOR FIGHTER AIRCRAFT

1.Real beam map 0.5 -10 mgz
2.Doppler beam sharp 5-25 mgz
3. SAR 10 -500 mgz
4.A-S range 1-50 mgz
5.PVU 1-10 mgz
6.TF/TA 3-15 mgz
7.Sea surface search 0.2 -500 mgz
8.Inverse SAR 5-100 mgz
9. GMTI 0.5-15 mgz
10.Fixed target track 1-50 mgz
11.GMTT 0.5 -15 mgz
12.Sea Surface track 0.2-10 mgz
13.Hi power Jam 1-100 mgz
14.CAl/A.G.C 1-500 mgz
15A-S data link 0.5-250 mgz

T.e dlja bolschinstwa funkzij dostatochen AD9467 16 bit ADC 250 msps s Fin do 300 mgz
Realnij dinamicheskij diapazon -74 db, ENOB -12 bit

250 msps eto polosa 125 mgz

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4853
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 14:49. Заголовок: Missile defense agen..


Missile defense agency 2008 https://www.dodsbir.net/selections/abs073/mdaabs073.htm

ADVANCED SCIENCE & NOVEL TECHNOLOGY
27 Via Porto Grande
Rancho Palos Verdes, CA 90275
Phone:
PI:
Topic#: (408) 564-9236
Dr. Sean P. Woyciehowsky
MDA 07-003 Awarded: 02/13/08
Title: High Performance Rad Hard Analog to Digital Converter Architectures
Abstract: Electronic components for future space based radar systems on chip (SOC) must function correctly in natural and radiation filled environments while providing state-of-the-art performance. The corresponding SOC must employ advanced, extra low-power, radiation-hardened (RH), analog-to-digital converters (ADCs) capable of operating at multi-giga sampling speeds. To satisfy the described needs, we propose to develop an ADC block with 9 bits of resolution and up to 10Gs/s of sampling speed. The 9 bit wide data will be demultiplexed by a factor of eight to a rate of 1.25Gb/s for direct loading into a following FPGA where signal processing will be performed. Our patent-pending radiation-hardening techniques incorporate a methodology based on protection and redundancy, which provides both total ionization dose (TID) and single-event upset (SEU) tolerance within the IC. The proposed high performance characteristics of the ADC will be achieved by utilizing an advanced SiGe IC fabrication technology.
-----------------------------------------------------------------------------

https://www.dodsbir.net/selections/abs073/mdaabs073.htm

HITTITE MICROWAVE CORP.
20 Alpha Road
Chelmsford, MA 01824
Phone:
PI:
Topic#: (719) 590-1112
Dr. Michael Hoskins
MDA 07-003 Awarded: 02/13/08
Title: High Sample-Rate Ultra-Wideband Track-and-Hold Demultiplexer (2007047)
Abstract: Hittite proposes to develop a Radiation-Tolerant Ultra-Wideband Track-and-Hold (T/H) Demultiplexer to address MDA's future needs for microwave signal sampling/data conversion. This development is motivated by the difficulties in achieving high-speed interleaved analog-to-digital converter (ADC) assemblies with good accuracy.
-----------------------------------------------------------------------------------------------------------------

A switched-emitter-follower T/H amplifier in the SiGe BiCMOS process with the capability for 15 GHz sampling bandwidth,
6 - 8 Gs/s sample rate, and 8 - 9 bit accuracy will be studied. This high-speed T/H will be used as the front end of a
------------------------------------------------------------------------------------
two-rank T/H sampler/demultiplexer that provides a 2:1 output sample rate reduction, enabling the use of lower rate ADCs in an interleaved assembly without the usual sample timing mismatches that degrade performance.
----------------------------------------------------------------------------------------------------------------------

The T/H demultiplexer can also operate as a subsampler to down convert any Nyquist bands within the 15 GHz bandwidth. This T/H circuit is expected to offer unprecedented bandwidth and operating speed while maintaining accuracy suitable for meeting the X-band and microwave data conversion goals of many military systems. Under Phase I, Hittite will perform a design study with circuit simulations to determine the feasibility and performance of the basic T/H amplifier and the two-rank demultiplexer. Prototype circuits will be built and tested in Phase II.

---------------------------------------------------------------------------------------

NU-TREK
17150 Via del CampoSuite 202
San Diego, CA 92127
Phone:
PI:
Topic#: (909) 864-7858
Mr. William Poland
MDA 07-003 Awarded: 02/13/08
Title: Multiplexed, Rad Hard ADC
Abstract: The proposed part is a rad-hard, 16-input, 14-bit ADC, with aggregate speed of 200 MSPS.
--------------------------------------------------------------------------------------------------------------------
dlj srawnenija 09.2010 National 12 bit 1000 msps ,100 krad


The 16 inputs are sampled individually and can be configured as 16 single-ended inputs or 8 differential inputs. The ADC provides 14 data outputs, a data-ready signal, and an over-range indicator. The digital outputs of the ADC are CMOS low-voltage differential signal (LVDS) outputs. The part will be fabricated using Texas Instruments' BiCom3X, a SOI process with CMOS and complementary SiGe bipolar transistors. SiGe bipolar transistors typically have very high total dose hardness,
------------------------------------------------------------------------------------------------------------------------------------------

and we are not aware of an ELDRS problem. The SOI wells prevent latch-up and restrict the silicon volume that can produce photocurrents from either ionizing dose rates or single event strikes. Our designers, Bill Poland, Jim Swonger, Wayne Dietrich and John Branning, have designed over 140 ASICs, many of them rad-hard. They worked together on a 14-bit rad-hard ADC, on which the proposed part is based. Nu-Trek is an emerging suppler of rad-hard parts, with four parts coming on sale in 2008. The Nu-Det has already been inserted into the MKV and NGIMU. The Clam/NED is slated for insertion in the Army's FCS.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4858
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 21:42. Заголовок: A Wide Dynamic Range..


A Wide Dynamic Range Radar Digitizer

http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf<\/u><\/a>

However, converting from the analog to digital domain
introduces errors which limit overall system performance.
One of the most important limitations is dynamic range,
which is the range of signal amplitudes that can be captured
by an ADC. This defines the minimum detectable signal
#####################################

in the presence of a larger, interfering signal.
##############################

otrazennij signal ot celi w prisutstwii pomex


This is set
both by the number of bits and the Signal to Noise Ratio(SNR).
############################################


A 16-bit ADC is used to capture the (C Band) transmit
pulse after down conversion to IF. This adequately records
the start pulse for synchronization and associated signal
phase for demodulation.
However, the input RF return signal has a dynamic
range of 105 dB, which is greater than the (ideal theoretical)
dynamic range for any commercial, high-speed ADC
(limited to 16 bits). This dynamic range requires a 20-bit
ADC as shown. To provide this capability, the normal input
signal range is extended using instantaneous automatic
gain control (AGC) as part of the digital signal processing
(DSP) function.


ADC Dynamic Range
An ideal ADC has an SNR equal to 6.02 × N + 1.76 dB,
where N is equal to the number of bits. For a 16-bit converter,
this translates to 98 dB, which is the maximum
(ideal theoretical) limit for input signal dynamic range.
However, for high speed converters this ideal SNR is never
achieved due to other issues which conspire to limit the
SNR to a much lower value. These issues include ADC nonlinearity,
front end amplifier noise and sample clock jitter.
A typical SNR value for a high-speed (120 MHz sample
rate) ADC is about 76 dB, which is well below the theoretical
limit.

sent 2010 -AD9467 -73-74 db na 300 mgz ,250 msps
#####################################

Wide Dynamic Range Digitizing
As mentioned previously, recording weather radar signals
requires a minimum of 105 dB of dynamic range. Since
the dynamic range of available high speed ADCs is limited
to 90 dB (with processing gain), with further reductions
down to 80 dB due to the clock source (jitter), a simple ADC
is not sufficient.
Symtx Inc. has implemented a dual ADC scheme to
increase digitizer dynamic range as shown in Figure 3. The
design uses a high-gain channel to process low-level signals
and a low-gain channel to process high-level signals,
with simultaneous sampling of both channels in parallel.
The gain difference between the high-level and low level
ADCs is compensated with an appropriate n-bit left shift
to give the correct scaling. A DSP after the two ADCs then
selects the correct ADC output, adjusts for gain, and
merges the two to create a 20-bit word with the desired
dynamic range.
The process is essentially an instantaneous AGC which
responds to the signal amplitude at the input. Since range
bins for weather radars are on the order of 1 microsecond,
the DSP operates by scanning the data for each range bin
to determine the maximum signal amplitude. If this is
within the maximum level for the high-gain (low-signallevel)
ADC, it is used for data collection (to maximize signal
resolution). If any sample exceeds this threshold, all data in
the range bin is collected using the low-gain (high-signallevel)
ADC.

Summary
High-speed RF signal capture with wide dynamic range
signals is readily achievable with today's high-speed ADCs.
With careful design followed by the appropriate digital signal
processing, it is possible to capture and recreate signals
with dynamic ranges in excess of 100 dB.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4859
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 22:13. Заголовок: However, as discusse..


However, as discussed in the article entitled
“A Wide Dynamic Range Radar Digitizer,”
[1] converting to the digital domain introduces
errors which limit overall system performance.

One of the most important limitations
is dynamic range, which is the range of signal
amplitudes that can be captured by an ADC.
This is determined by the number of conversion
bits as well as by the signal-to-noise ratio
(SNR) of the analog components (amplifiers,
mixers, etc.) which precede the ADC.

http://highfrequencyelectronics.com/Archives/Nov08/1108_Friedman.pdf<\/u><\/a>

is the ability to accommodate a dynamic
range of at least 105 dB between the maximum-
capable and minimum-detectable amplitudes
that may occur in the course of a single
radar trace.
The actual system operates above 5 GHz
and includes RF mixers, filters, amplifiers,
tunable frequency sources, and other analog
devices that are not shown in the figure.
However, the dynamic range and SNR are set
primarily by the IF devices in this diagram


The receiver in the radar itself as originally
designed used analog AGC to compress the
signal amplitude range prior to digitization. However,
this was found to cause distortion and other undesirable
effects. The AGC was later eliminated by converting to an
all-digital receiver using an arrangement of two 14-bit
ADCs with a 24-dB gain offset. One or the other ADC output
is used according to the instantaneous amplitude of
the signal, and the resulting digital value is bit-shifted as
needed to compensate for the gain offset, resulting in an
effective 20-bit ADC. Note that this does not provide 20
bits of resolution, since only 14 bits are used for any given
sample, but the ratio of maximum-to-minimum signal
level is equivalent to that of a 20-bit ADC.

Dynamic Range
For purposes of this discussion, consider the dynamic
range to be the ratio of maximum-capable to minimumdetectable
signal amplitude. In terms of the DAC alone,
the minimum-detectable signal is determined by its
quantization. For example, the dynamic range requirement
of 105 dB corresponds to a ratio of approximately
217.5 or a shift of 17.5 bits. This can be shown to be
accommodated by the 20-bit word as follows. Allowing for
a sign bit leaves 19 bits for the peak magnitude of the
largest signal. Shifting right by 17.5 bits leaves 1.5 bits
for the peak of the smallest signal, or 1 bit for the RMS
level, i.e., the RMS of the smallest signal is equal to the
smallest value that can be represented (the magnitude
difference corresponding to the low-order bit).
More generally, the dynamic range is determined by
the SNR, defined as the ratio of the maximum signal
amplitude to the noise floor when a small signal is present
(so as to bring quantization noise into account).
Assuming a signal must be above the noise floor by a
certain amount (in dB) in order to be detectable, the
dynamic range will be equal to the SNR less this
amount. The noise present at the DAC output consists
of quiescent (mostly thermal) circuit noise, which is
fixed in absolute level, plus quantization noise and
other noise generated in the DAC (as specified by the
SNR given in the data sheet), both of which are relative
to the DAC’s full-scale output value. For a full-scale
sinusoidal signal, the SNR defined by quantization
noise alone is 6.02 × N + 1.76 dB, where N is the number
of bits, giving approximately 98 dB for a 16-bit
DAC, or 122 dB for 20 bits. This sets an upper limit on
the data-sheet SNR, which takes all internal noise
sources into account, including nonlinear intermodulation
effects which generally will depend on the actual
composition of the signal.
For the purposes of this article, we assume that the
DAC output level is scaled so that the DAC-internal noise
(including quantization noise) is above the quiescent
(thermal) noise, so that the dynamic range is determined
essentially by the DAC noise. If this is not the case, then
the dynamic range is reduced by the amount by which the
DAC noise falls below the quiescent noise.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4860
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.10.10 22:41. Заголовок: http://www.naic.edu/..


http://www.naic.edu/<\/u><\/a>
http://en.wikipedia.org/wiki/Arecibo_Observatory<\/u><\/a>
The World's Largest and most Sensitive Radiotelescope located in Arecibo, Puerto Rico

The observatory's 305 m (1,001 ft) radio telescope is the largest single-aperture telescope (cf. multiple aperture telescope) ever constructed. It carries out three major areas of research: radio astronomy, aeronomy (using both the 305 m telescope and the observatory's lidar facility), and radar astronomy observations of solar system objects


http://www.naic.edu/~nolan/radar/ri.html<\/u><\/a>
The radar data acquisition system has three primary modes of operation for planetary radar: hardware decoding of a coded signal, direct sampling of a coded signal, and CW spectrometry

The initial input for this system is a 260 MHz IF (left and right circular down-converted from 2380 MHz upstairs). Because of our narrow-band signal, conversion to circular in the turnstile upstairs probably gives us cleaner polarizations than using the downstairs IF/LO. This signal has not been Doppler corrected. This signal comes down on an optical fiber, then out of the downstairs IF/LO system on the .2-.4 GHz channel. The analog gain is set in the IF/LO, with a fine gain control later in the signal path. There are two independent (polarization) channels in this hardware, but there is only one set of frequency synthesizers. The 260 MHz signal is passed through a many-pole 20 MHz analog bandpass filter. This filtered 260 MHz signal is then down-converted to baseband by a Doppler-correcting mixer, then analog low-pass filtered for sideband rejection. The signal power is measured at this point for setting the gains to get good dynamic range into the digitizers.


Decoder

At this point, the signal is fed to an 8-bit digitizer running at 80 MHz. The digitizer feeds the software-selectable digital sinc filters, which provide separate 9-bit I and Q outputs. The filters provides 4-bit input to the hardware decoder. Which 4 bits is software selectable.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4869
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 11:39. Заголовок: ADC interleaving ,a..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4870
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 12:05. Заголовок: For example, in mili..


For example, in military radar systems, a single ADC12D1X00 combined with a digital down-converter can replace multiple mixers, filters, amplifiers and local oscillator stages used in traditional heterodyne double- or triple-conversion radio implementations.
#####################

Since this new class of SDRs requires the ADC to sample wide-bandwidth signals, a new set of metrics such as noise-floor, NPR and IMD provide the best measure of a system's capability to extract narrowband information from a wideband spectrum.



This is in stark contrast to traditional ADC specifications -- signal-to-noise ratio (SNR), spurious-free dynamic range (SFDR), and effective number of bits (ENOB) -- which focus on single-tone performance in the Nyquist bandwidth and do not provide the best gauge of a system's overall capability.


...and IMD
###########

Dlja ADC!2D1800

DESIQ mode -61 db

1212 mgz ,1217 mgz -54 db

chut lutsche chem SINAD na 1448 mgz -50db
------------------------------------------------------

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4871
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 12:41. Заголовок: Menee skorostnoj 12..


Menee skorostnoj 12D1000 non des -mode ,1000 megasample -sootw .mozet obrabotat 500 mgz polosu signala
protiv 12D1600 non des mode - 800 mgz , 12D1800 non des mode ,1800 megasample ,900 mgz

ENOB 8.6 db 8.6 db 8.4 db 1448 mgz
SINAD 53.6 db 53.8 db 52.5 db
SNR 54.1 db 55 db 53.1 db
SFDR 67 db 61.9 db 60.3 db

http://www.national.com/ds/DC/ADC12D1000.pdf<\/u><\/a>

VErsija ,stojkaja k radiazii tolko 12D1000 na 1000 megasample

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4872
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 13:01. Заголовок: srawnenija ADS5400 ..


srawnenija ADS5400 TI 1000 megasample(cena 775 $) s NS 12D1000 1000 megasamle

ENOB
ADS5400 12D1000
498 mgz n/d 9.4 db
600 mgz 9.37 db n/d
850 mgz 9.3 db n/d
998 mgz n/d 8.9 db

SINAD
498 mgz n/d 58.2 db
600 mgz 58.2 db n/d
850 mgz 57.8 db n/d
998 mgz n/d 55,4 db
1200 mgz 57.5 db n/d
1448 mgz n/d 53.6 db
1700 mgz 54.2 db n/d


SFDR
498 mgz n/d 68.7 db
600 mgz 72 db n/d
850 mgz 71 db n/d
998 mgz n/d 66 db
1200 mgz 66 db n/d
1448 mgz n/d 67 db
1700 mgz 56 db n/d

http://focus.ti.com/lit/ds/symlink/ads5400.pdf<\/u><\/a>

http://www.national.com/ds/DC/ADC12D1000.pdf<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4873
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 13:10. Заголовок: http://www.atmel.com..


http://www.atmel.com/dyn/resources/prod_documents/doc5431S.pdf<\/u><\/a>

atmel 10 bit / 2.2 gsps 2003 goda SiGE ,1100 $ w 2005 godu

na 1000 mgz 7.8 bit ENOB

Applications
• Direct RF Down Conversion
• Ultra Wide Band Satellite Receivers
• Radars and Countermeasures
• High-speed Acquisition Systems
• High Energy Physics
• Automatic Test Equipment

potr .moschnost 6.8 watt

http://www.bdtic.com/ATMEL/Broadband/index.html<\/u><\/a>


Releases

Atmel Breaks the 2GHz Barrier for High-speed Digitization With a Linear 10-bit 2.2 Gsps Analog-to-Digital Converter

First ADC Delivering 2.2 GHz Sampling Rate 50 Percent Faster than Competitors Products

Grenoble, France – June 7, 2005. . Atmel® Corporation (Nasdaq: ATML), a global leader in the development and fabrication of advanced semiconductor solutions, announced today the industry's fastest commercially available 10bit analog-to-digital converter (ADC) with a clock frequency of 2.2 Gsps, providing high performance over 1st and 2nd Nyquist zones.

The new AT84AS008GL is fully pin-compatible with Atmel's TS83102G0BGL 10-bit 2 Gsps ADC, allowing for seamless upgrades and providing a full 8 Effective Number of Bits at 1.7 Gsps in 1st Nyquist for high speed digitization applications such as broadband test & measurement equipment, high speed data acquisition, telecommunications and defense.

The AT84AS008GL is the latest in Atmel's family of Gigahertz 10-bit data converters, providing a new level of linear performance over 1st and 2nd Nyquist zones while reducing power consumption and improving frequency spectral response. By leveraging Atmel's expertise in fast ADC design and incorporating the latest advances in the company's folding and interpolating architectures, the new device provides excellent dynamic performance of 55dB SFDR and 51dB SNR at 2.2 Gsps in first Nyquist conditions. Furthermore, the 3.3 GHz input bandwidth extends ADC operation well into the 2nd Nyquist zone with essentially flat performance: SNR remains at 48 dB and SFDR at 55 dB.

Interfacing the AT84AS008GL with FPGAs, DSPs, or ASICs is possible through a new Atmel companion DMUX chip, AT84CS001TP. It provides 10-bit 2.2 GHz performance with 1:4 or 1:2 LVDS compatible demultiplexing ratios.

"The AT84AS008GL is a clear winner over any other high-speed ADC on the market," said Andrew Benn, marketing manager for Atmel's Broadband Data Conversion product line. "This ADC reaffirms our commitment to providing fast linear data converters as an enabling technology for next generation digitization applications. It sets a new standard for digitization speed and accuracy and allows system designers to reach new levels of performance."

The AT84AS008GL is a step-ahead of the competition, being the first ADC available on the market to provide a guaranteed 2.2 GHz sampling rate, nearly 50 percent faster than the closest competitor. In addition, the FFT spectral response remains very stable over temperature and clock frequency variations, allowing significant system performance enhancement through digital processing even under severe environmental conditions.

The AT84AS008GL is delivered in a CBGA 152 ceramic package and operates over Commercial and Industrial temperature ranges. A Military grade version is planned for availability in 2006. Samples are available now with production quantities in July 2005, at a unit price of $1100 for a 1K-piece quantity.

About Atmel

Atmel is a worldwide leader in the design and manufacture of microcontrollers, advanced logic, mixed-signal, nonvolatile memory and radio frequency (RF) components. Leveraging one of the industry's broadest intellectual property (IP) technology portfolios, Atmel is able to provide the electronics industry with complete system solutions. Focused on consumer, industrial, security, communications, computing and automotive markets, Atmel ICs can be found Everywhere You Are®.

©Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Information

Further information on the AT84AS008GL can be found at:
http://www.atmel.com/dyn/products/product_card.asp?part_id=3679<\/u><\/a>

For more information on Atmel's Broadband Data Conversion products go to:
http://www.atmel.com/products/Broadband/overview.asp<\/u><\/a>

Press Contact

Sylvie Mattei, Communications Manager – Atmel Grenoble
Tel: +33 4 76 58 30 25, Email: sylvie.mattei@gfo.atmel.com

Veronique Sablereau, Corporate Communications Manager - Europe
Tel: +33 1 30 60 70 68, Fax: +49 71 31 67 24 23 Email: veronique.sablereau@atmel.com

Ford Kanzler, Manager of Corporate Press Relations - USA and Asia
Tel: +1 408 436 4343, Email: pr@atmel.com

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4875
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 15:04. Заголовок: Analog–to–Digital Co..


Analog–to–Digital Converter Technology and Corresponding Signal Processor Throughput and Dynamic Range. For the PATRIOT radar, advanced signal process technology is required to support dynamic ranges while maintaining the throughput, size, weight, and prime power requirements. Applicable advanced signal processing techniques, such as maximum entropy method (MEM), are required for incorporation into PATRIOT, along with a concept for their utilization, signal processor hardware concepts, and an assessment of their performance improvement over pulse Doppler for various environments.

The PAC–3 radar signal processors currently use 12–bit A/D converters for narrow band actions. For radar performance in clutter, more dynamic range is needed—up to 14–16 bits for wide band. system/transmitter intermediate frequency (S/T–IF) receiver subsystem changes would require the incorporation of 16 bit A/D converters into the PATRIOT S/T–IF receive subsystem, along with the incorporation of the advanced signal processor hardware and processor resident software. Included in the proposed architecture and design is the removal or disabling of the current digital signal processor and the replacement of their functions in the advanced signal processor. The CDI–3 receiver subsystem was designed for later incorporation of 12 bit A/D converters when available. The incorporation of the 14–bit converter will require some redesign of the receiver. The value added for PATRIOT is improved fire unit search, track, and CDI capabilities in low altitude, high clutter or extensive antitactical missile debris environments. The technology infusion period is from 1QFY02 to 4QFY03. [POC: Rodney Sams, PATRIOT, (205) 955–3166]


http://www.fas.org/man/dod-101/army/docs/astmp98/de.htm<\/u><\/a>

, more dynamic range is needed—up to 14–16 bits for wide band

Gde ix wzjat ... Lider 16 bit AD9467 250 megasamples ,Fin 300 mgz
------------------------------------------------------------------------------------------

250 megasamples eto wsego 125 mgz

Dlja X band (8-10 ghz) polosa 1000 mgz /razreschenie 250 mm
---------------------------------------------------------------------------

prodwizenie texnologii 1.5 bita za 8 let

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4876
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 15:16. Заголовок: ADS5463 toze 12 bit..


ADS5463 toze 12 bit kak i ADS5400 no 500 msps wmesto 1000 msps

Hirel -wiskoja nadeznost ,class V

5463 -7500 $ za stuku w partijax p o100 stuk
5400 -775 $


http://focus.ti.com/lit/ds/symlink/ads5463-sp.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4877
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 15:21. Заголовок: Hall: We did engage ..


Hall: We did engage with one company by the name of Mercury Computer Systems.
-----------------------------------------------------------------------------------------------

postawschik Northrop


They build data acquisition cards and essentially the company's creates data acquisition card solutions. The company is focused on military/aerospace applications. What results is a proof of concept through these data acquisition cards and then the company will typically do a custom job for a particular project.

Brian Kimball, Principal HW Engineer at Mercury Computer Systems told us: “We needed a 16-bit, 250-MSPS data converter with 90 db of SFDR for one of our key customer's highly advanced, data acquisition systems. The AD9467 data converter was designed into this customer's system because it met our SFDR, ENOB, and power requirements. Analog Devices worked with us as trusted advisors to provide early-access silicon and design support to enable the timely development of our prototype product.”

What caught MCS' customer's attention was their system's performance based on our ADC. We've been working with Mercury for a couple of quarters now in terms of early engagement and early samples for them. It has been very successful for them.


http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf?ref=PR_9-27-10_AD9467<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4878
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 16:10. Заголовок: http://www.tekmicro...


http://www.tekmicro.com/PDFs/QuiXilicaV5wp.041508.pdf<\/u><\/a>

QuiXilica V5 Architecture:
The High Performance Sensor I/O Processing Solution for the Latest
Generation and Beyond
Andrew Reddig
President, CTO
TEK Microsystems, Inc.
Military sensor data processing applications for communications, radar, and electronic
warfare have an insatiable demand for increased signal performance. Sensors continually
require more channels, increased processing capabilities, higher memory performance
and greater communications bandwidth.
Advanced applications in Radar, EW, ELINT, SIGINT and Telecom require the
performance offered by the very latest component technologies of FPGAs, memories,
communications standards, etc. To get the best out of these latest technologies,
Tekmicro’s new QuiXilica V5 Architecture encompasses a holistic architectural
philosophy resulting in an advanced family of products that serves the needs of
demanding sensor I/O applications.
The QuiXilica V5 Architecture builds upon the success of the current QuiXilica board
family, utilizing Xilinx Virtex-5 FPGAs, DDR3 SDRAM and the latest enhancements in
flexible I/O communication modules (SFP+ and QSFP). These components are carefully
interconnected and balanced into an architecture optimized for target applications in
sensor I/O processing.
QuiXilica V5 Architecture
The QuiXilica V5 Architecture is the basis for a variety of digitizer boards in multiple
form factors. A very broad range of analog sensor I/O configurations provide easy
compatibility with the widest range of analog signal options, addressing multi-channel,
high resolution sampled data requirements at 4 Gsps (Gigasamples per second) and
beyond.
QuiXilica V5 boards are designed to retain the strong underlying principles and core
feature set of the previous generation of QuiXilica digitizers such as high speed front
panel I/O, high signal integrity, high bandwidth memory, and significant FPGA
resources.


Building upon the success of the current QuiXilica board family and retaining a
migration path for current users, the analog configuration options that are planned to be
available for QuiXilicaV5 digitizers are:

 6 x 16 bit 160MSPS ADC & 1 x DAC channel
 7 x 16 bit 500 MHz DAC channels
 2 x 10 bit 2.2 GHz ADC channels
 2x 12 bit 2.2 GHz DAC channels
 1x 10 bit 2.2 GHz ADC channels with 1x 12 bit 2.2 GHz DAC channels
 6 x 12 bit 500MHz ADC channels
 2 x 8 bit 4GHz ADCs channels
 + further configurations to be determined


The efficiency of the QuiXilica V5 Architecture is best observed in the context of
classical sensor I/O data processing applications. These applications generally consist of
a number of sensor inputs, such as ADCs, which produce a set of digitized data streams
followed by a number of processing stages. Multiple sensors may be utilized to digitize
data from receivers spread in physical distance or to achieve processing gain through
channel combining. Each stage of processing typically aims to reduce the data rate
through signal processing until a manageable low rate data stream can be provided to the
user for analysis.
This process, shown in Figure 4 can be conceptualized as a funnel with a large number
of sensors providing input data streams that are gradually reduced using a number of
processing stages. At the bottom of the funnel, processed data is output after having been
processed and combined to a manageable rate. This signal processing architecture is
typical for beamformers and front-end sensors used in SIGINT and ELINT applications.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4879
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 16:13. Заголовок: http://www.tekmicro...


http://www.tekmicro.com/products/digitizers.cfm<\/u><\/a>


Overview:
TEK Microsystems, Inc., was founded in 1981 and is headquartered in Chelmsford, Massachusetts. Key customers include defense contractors such as Raytheon, Northrop Grumman, Lockheed Martin, General Dynamics, Thales, BAE, and several government research organizations in the U.S. and abroad.

TEK Microsystems, Inc. designs, manufactures and markets a wide range of advanced high-performance FPGA based sensor I/O processing products for embedded real-time computing systems. The comprehensive product line includes advanced ADC/DAC interfaces, complete data acquisition and data recording/storage systems, digital I/O XMC/PMC modules as well as advanced signal processing systems.

These products are used in real-time systems designed for data acquisition, instrumentation, control systems and signal processing in customer applications such as reconnaissance, signals intelligence, satellite telemetry, mine detection, medical imaging, radar, sonar, semiconductor inspection and seismic research.

##########################################################

Dual 10-bit ADC Proteus-V5 VXS – 5 GSPS per Channel

Arlington, VA – May 11, 2010 – At the IEEE Radar 2010 conference, TEK Microsystems, Incorporated, the leading supplier of VME and VXS-based signal acquisition, generation and FPGA-based processing products, has announced the latest member of our QuiXilica product family, the Proteus-V5. The new Proteus-V5 features two 10-bit analog-to-digital converter (ADC) channels, each operating at up to 5.0 GSPS (Gigasamples per second). Like all members of the QuiXilica-V5 VXS family, the Proteus-V5 is compatible with legacy VME systems as well as newer ANSI/VITA 41 VXS based systems and combines high density FPGA processing with the ultimate in ultra wide band ADC signal acquisition.





Proteus-V5 ADC Supports Ultra Wide Band Signal Acquisition
Proteus-V5 is based on the e2v EV10AQ190 ADC device, which contains four separate 10-bit 1.25 GSPS A/D converters. Each device can be configured to operate as four 1.25 GSPS converters in a non-interleaved mode, or as either 2 channels at 2.5 GSPS or 1 channel at 5 GSPS using the converters in an interleaved mode. In all modes, the converters provide 10-bit resolution and input bandwidth exceeding 3 GHz. This allows the ADC to be used as a 5 GSPS converter for 1st Nyquist applications or as a high density multichannel ADC for lower bandwidth applications using either 1st or 2nd Nyquist sampling.

##############################################

Two or Six Channel 12-bit ADC with Up To 3.2 GSPS per Channel

Arlington, VA – May 13, 2010 – At the IEEE Radar 2010 conference, TEK Microsystems, Incorporated, the leading supplier of VME and VXS-based signal acquisition, generation and FPGA-based processing products, has announced the latest member of our QuiXilica product family, the Calypso-V5. The new Calypso-V5 supports either two 12-bit analog-to-digital converter (ADC) channels at 3.2 GSPS (Gigasamples per second) or six channels at 1.6 GSPS. Like all members of the QuiXilica-V5 VXS family, the Calypso-V5 is compatible with legacy VME systems as well as newer ANSI/VITA 41 VXS based systems and combines high density FPGA processing with the ultimate in ultra wide band ADC signal acquisition.

“Tekmicro is committed to providing our customers with the best available ADC technology for 10, 12, and 16 bit resolutions. The new Calypso-V5 is another industry first for Tekmicro, providing the fastest available sampling rate for 12-bit signal acquisition”, comments Andrew Reddig, CEO / CTO of Tekmicro. “By using National Semiconductor’s latest ADC device, we are able to meet our customers’ requests for multi-channel signal acquisition and processing using 2nd Nyquist sampling and 500+ MHz staring bandwidth, which addresses a critical “sweet spot” for certain applications sampled at 1.333 GSPS”.

Calypso-V5 ADC Supports Ultra Wide Band Signal Acquisition
Calypso-V5 is based on the latest National Semiconductor ADC device which supports either a pair of channels in non-interleaved mode or a single channel using 2:1 interleaved sampling. Calypso-V5 contains four ADC devices, supporting a total of either six channels plus trigger at 1.6 GSPS or two channels plus trigger at 3.2 GSPS.

In all modes, the converters provide 12-bit resolution and open analog bandwidth exceeding 2 GHz. This allows Calypso-V5 to be used as a 3.2 GSPS converter for 1st Nyquist applications or as a high density multichannel building block for lower bandwidth applications using either 1st or 2nd Nyquist sampling.
Calypso-V5 also includes sample-accurate trigger synchronization in all modes, allowing coherent processing of multiple input channels both within a single card and across multiple cards. This allows applications of up to 108 channels to be supported within a single chassis

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4880
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 16:24. Заголовок: Tekmicro Supplies Si..


Tekmicro Supplies Signal Processing System for NASA Glenn Research Center

New Texas Instruments ADS5400 Supports Tekmicro’s Unprecedented Performance
######################################################

on stoit 775 $ w partijax po 100 stuk ,12 bit 1000 megasamles
--------------------------------------------------------------------------

Chelmsford, MA – October 26, 2009 – TEK Microsystems, Inc. announced it has shipped follow up system orders to NASA Glenn Research Center in Cleveland, OH. Glenn is developing

a VXS-based satellite communications test set for ground based validation of satellite equipment. The test set will be used
################################################################
for the Tracking and Data Relay Satellite System compatibility testing as part of NASA’s Constellation Program. Successful development will result in additional orders of totaling over $1M.

NASA’s Constellation Program is building the next generation of space vehicles that will take astronauts to low Earth orbit, the moon, and eventually to Mars.

Tekmicro’s Titan-V5 VXS and Callisto VXS boards are now being used in the program. Titan-V5 VXS was selected because of its first-in-the-industry levels of high performance, low latency, and signal integrity.


The Titan-V5 combines four channels of 1 GSPS 12-bit ADCs, four channels of 1.2 GSPS 14-bit DACs and three Virtex-5 FPGAs to provide the highest bandwidth channel count per slot available for VXS products on the market today.

By providing a massive FPGA processing resource at the heart of the VXS communications fabric, Callisto achieves an optimal balance between processing power and IO bandwidth; maximizing the value that can be extracted from the use of FPGAs for signal processing.

“The Titan-V5 utilizes best-in-class devices for digitization and signal generation, and, it redefines low latency by providing almost instantaneous acquisition-to-response times when compared with older architectures using multiple boards or modules,” comments Andy Reddig, CEO/CTO of Tekmicro. “Our ability to implement the newly announced ADS5400 from Texas Instruments gave our engineering team technology with nearly 2x the speed of competitive offerings. The culmination of these advanced technologies gives Titan-V5 a competitive edge for signal processing solutions.”

In addition to Callisto and Titan-V5, Tekmicro offers the broadest range of Xilinx Virtex-5 based streaming I/O and FPGA processing solutions for both analog and digital I/O in the industry today in both commercial and rugged options.

About TEK Microsystems, Incorporated
Founded in 1981 and headquartered in Chelmsford, Massachusetts, Tekmicro designs, manufactures and delivers a wide range of advanced high-performance boards and systems for embedded real-time data acquisition, data conversion, storage and recording. Tekmicro provides both commercial and rugged grade products that are used in real-time systems designed for a wide range of defense, intelligence and industrial applications such as C4ISR, SIGINT, EW and Radar.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4881
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 16:36. Заголовок: Tarvos-V5 Overview ..


Tarvos-V5 Overview
Designed to meet the needs of demanding sensor-processing applications across a range of environments, the Tarvos-V5 employs three Xilinx Virtex®-5 FPGAs, advanced DDR3 SDRAM, and the highest resolution digital-to-analog and analog-to-digital converter technologies available at a 185 Msps sampling rate.

Each analog input channel uses a Linear Technology LTC2209 16-bit A/D converter, which is designed for digitizing high frequency, wide dynamic range signals within an analogue input bandwidth of 700 MHz. A range of options are available for input signal conditioning to support different receiver applications.

http://www.tekmicro.com/news_events/TarvosV5.cfm<\/u><\/a>


http://cds.linear.com/docs/Datasheet/2209fa.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4882
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 17:00. Заголовок: http://www.lnxcorp.c..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4883
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 17:12. Заголовок: The advantages alrea..


The advantages already mentioned include
the ability to sample at high IF frequencies.
• The disadvantages today include:
– The instantaneous bandwidth is still limited
by the sampling rate of the A/D.
– The dynamic range of the sample and hold
is limited at high RF frequencies

http://www.lnxcorp.com/Files/Wideband.pdf<\/u><\/a>


• Radar Warning Receivers (RWR) need wideband
receivers to detect possible threats:
– Possible threats may occupy a very wide band
in frequency (2-18 GHz)
– Threats may overlap in time or frequency.
– Systems must search entire frequency space
continuously and in real time.
• Current state-of-the-art seems to include >1 GHz
real-time processing bandwidth with 50-60 dB of
dynamic range.

• Analog Receiver Approach
– The performance of a wideband receiver
that “sees” entire band will be limited by
noise (kTB).
– An analog receiver with multiple filters can
be used to limit noise bandwidth.
– As you add filters to cover band while
reducing bandwidth, complexity increases
greatly.
– Coherent detection with mixer and multiple
LOs is even more complex.
• Can a “digital” receiver be used to search or
cover the band?

This receiver can achieve good sensitivity but
can only cover a portion of the band at any
given time.
• Unable to recover phase information.

Analog Receiver with Filter Bank
• This receiver can achieve good sensitivity
and cover the entire band but is much more
complex due to the large filter bank.
• Again, with a simple detector, sensitivity is
limited, and you are unable to recover phase
information.

• Digital Receivers often employ a technique referred
to as band pass or super-Nyquist sampling.
• Digitizing is a similar process to mixing. The
spectrum is replicated out to plus and minus infinity at
intervals of Fs, the sampling rate.
•For example, for a signal that appears in the third
Nyquist zone (section B); a replica will appear in the
other Nyquist zones.

Replicas of the original signal fa in the third
Nyquist zone also appear as fa' in the first
Nyquist zone and fa'' in the 5th Nyquist zone.
• The analog bandwidth of the A/D must be wide
enough to support band pass sampling.

• Dual Channel, wideband data
acquisition and real-time signal
processing module
• Input bandwidth DC – 3 GHz
• 2.20 Gsa/sec, 10-bit analogdigital
converter
• Real-time DSP using Xilinx
Virtex-IV Field Programmable
Gate Arrays
• VME, HotlinkTM, and RS232
interfaces.
• Ruggedized, conduction cooled
design

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4884
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 17:23. Заголовок: Typical characterist..


Typical characteristics from 1200 to 1400 MHz,
fSAMPLE = 1.6 Gsa/sec
– SFDR > 60 dB
– SNR > 46 db
– IMD > 60 dB (f1 =
1145 MHz, f2 = 1155
MHz).
– Flatness < +/- 0.4 dB.
1250 MHz input sampled


T.e. polosa signala wsego 200 mgz ,a nuzno 1000 mgz (250 mm razreschenie)

http://www.lnxcorp.com/Files/Wideband.pdf<\/u><\/a>
at 1.6 Gsa/s

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4885
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 17:27. Заголовок: With our communicati..


With our communication heritage as our proud legacy, LNX is committed to providing mission critical components, multi-function assemblies, transceivers, and digital products that keep our forces and nation out of harm’s way.

Team spirit is alive at LNX as we work together to overcome your system’s design challenges. Over the last decade, LNX has manufactured hardware for some of the most critical initiatives in military and homeland security programs, as well as high level commercial communications projects. Our products have been proudly deployed in military radar and communications, radio astronomy, missile guidance, UAV data links, EW and ECM fighter aircraft, shipboard radar and communications, remote sensing systems, and ground based satellite systems. With our broad range of product expertise, we are able to provide cost effective, highly reliable solutions our customer’s needs ranging from individual components to highly integrated and intricate multi-function assemblies.

Markets Served

Military/Aerospace

* Electronic Warfare (EW/ECM)
* Radar
* Communications
* Surveillance
* Navigation, Guidance

National Security

* Signal Acquisition
* Spectrum Monitoring

Commercial

* Radio Astronomy
* Communication

Applications include:

* Radar Warning Receivers
* Radar Jammers
* SIGINT (Signal Intelligence)
* Perimeter "Fences"
* IED Countermeasures
* Microwave and Millimeter Wave Communications
* Missile Seekers
* Digital Point-to-Point Radios
http://www.lnxcorp.com/Markets.cfm<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4886
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 20:03. Заголовок: Dlja radara C band..


Dlja radara C band 5.8 gigagerz ,kotorij ispolzowalsjaw programme Appolo

16 bit ADC podxodjat otlichno

The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar (SOTR), used extensively by the NASA manned space program and the U.S. Air Force. The accuracy of Radar Set AN/FPS-16 is such that the position data obtained from point-source targets has azimuth and elevation angular errors of less than 0.1 milliradian (approximately 0.006 degree) and range errors of less than 5 yards (5 m) with a signal-to-noise ratio of 20 decibels or greater.


The radar utilizes a 12-foot (4 m) parabolic antenna giving a beamwidth of 1.2 degrees at the half-power points. The range system utilizes either a 1.0, 0.5, or 0.25-microsecond pulse and the prf can be set by pushbuttons. Twelve repetition frequencies between 341 and 1707 pulses per second can be selected. A jack is provided through which the modulator can be pulsed by an external source. By means of external modulation, a code of from 1 to 5 pulses may be used.


The sum, azimuth, and elevation signals are converted to 30 MHz IF signals and amplified.
***************************************************************************

Promezutochnaja chastota 30 mhz ,polosa signala -8 mhz

y sowremennix 16-bit Linear tech,National Semiconductor ,TI i Analog Device

Fin do 300 mhz i 250 megasamle

8mgz polosa-eto minimum 16 megasample


The phases of the elevation and azimuth signals are then compared with the sum signal to determine error polarity. These errors are detected, commutated, amplified, and used to control the antenna-positioning servos. A part of the reference signal is detected and used as a video range tracking signal and as the video scope display. A highly precise antenna mount is required to maintain the accuracy of the angle system.


N/FPS-16 RADAR SET
TYPICAL TECHNICAL SPECIFICATIONS
------------------------

Type of presentation: Dual-trace CRT,
A/R and R type displays.

Transmitter data -
Nominal Power: 1 MW peak (fixed-frequency magnetron);
250 kW peak (tunable magnetron).
Frequency
Fixed: 5480 plus or minus 30 MHz
Tunable: 5450 to 5825 MHz

Pulse repetition frequency (internal):
341, 366, 394, 467, 569, 682, 732, 853,
1024, 1280, 1364 or 1707 pulses per second

Pulse width: 0.25, 0.50, 1.0 µs

Code groups: 5 pulses max, within 0.001 duty cycle limitation of transmitter.

Radar receiver data -
Noise Figure: 11 dB
Intermediate Frequency: 30 MHz
-------------------------------------
Bandwidth: 8 MHz
-----------------------
Narrow Bandwidth: 2 MHz
Dynamic Range of Gain Control: 93 dB

Gate width
Tracking: 0.5 µs, 0.75 µs, 1.25 µs
Acquisition: 1.0 µs, 1.25 µs, 1.75 µs

Coverage
Range: 500 to {{convert|400000|yd|m|-5|abbr=on}}
Azimuth: 360° continuous
Elevation: minus 10 to plus 190 degrees

Servo bandwidth
Range: 1 to 10 Hz (var)
Angle: 0.25 to 5 Hz (var)

Operating power requirements: 115 V AC,
60 Hz, 50 kV·A, 3 phase

http://en.wikipedia.org/wiki/AN/FPS-16<\/u><\/a>


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4887
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 20:36. Заголовок: Milstar-2 uplink44gh..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4888
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 20:47. Заголовок: http://www.ll.mit.ed..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4890
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 21:08. Заголовок: Ka band NASA ACTS s..


Ka band NASA ACTS satellite

Antenna 1.2 metra uplink 8 megabps ,downlik 45 megabps



Intermediate freuquency 3000-4000 mhz ,downlink bandwidth 1000 mhz dlj 622mbit/sec 5.5 metra D
antenna terminala

i 70 mhz dlja USAT

VSAT 758mhz transmit IF ,1620 received IF


http://gltrs.grc.nasa.gov/reports/2000/TP-2000-210047.pdf<\/u><\/a>

Dlja 70 mhz podxodjat rjad 16 -bitnix AZP




Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4891
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 21:32. Заголовок: dlja terminala s app..


dlja terminala s apperturoj 35 sm odnopreobrazowaniechastoti -70 mhz neuschaja

http://gltrs.grc.nasa.gov/reports/1997/TM-113126.pdf<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4893
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 22:06. Заголовок: http://www.eecs.umic..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4894
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.10.10 23:42. Заголовок: www.ll.mit.edu/HPEC/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4895
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 13:57. Заголовок: link wische poprawk..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4896
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 14:14. Заголовок: +21 db w NLEQ4000 d..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4897
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 14:20. Заголовок: X-Band Receiver-on-C..


X-Band Receiver-on-Chip (RoC)
Development Based on NLEQ DSP

• Linear dynamic range limited by the final NLEQ
IF amplifier
– NLEQ DSP to linearize the amplifier and ADC
• High performance and low power achieved with new
analog/digital co-design paradigm
MIT Lincoln Laboratory HPEC 2009-25
WSS 9/23/2009
• Single die receiver implementation being explored


• Linearity enhancement required by DoD/commercial
sensor/receiver applications
– Phased array sensors/receivers
– Frequency channelized sensors/receivers
• MIT LL has developed high-throughput low-power nonlinear
equalization signal processor ICs
– Massively parallel systolic architecture
– Polyphase distributed arithmetic processing
– Block floating point residue number arithmetic
– Full custom low-threshold-voltage dynamic logic
• Successful demonstration results
– >20 dB linearity improvement
– NLEQ4000
Up to 4GSPS, <1.25W
Up to 12 bit ADCs
– NLEQ500
Up to 500MSPS, <0.25W
Up to 18bit ADCs

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4898
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 14:40. Заголовок: http://www.pentek.co..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4899
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 17:21. Заголовок: Texas Instruments A..


Texas Instruments ADS5485 16 bit 200 msps 9/24/2008
Analog Device AD9467 16 bit 250 msps September 30, 2010

za dwa goda progress 50 msps

Esli sdwoit to 500 msps = polosa 250 mghz = razreschenie =1 metr


LTC2209 +12 db ot NLEQ Lincoln laboratory .smotri stat'ju wische ...

http://cds.linear.com/docs/Datasheet/2209fa.pdf<\/u><\/a>

250MHz Input (2.25V Range, PGA = 0) 75 db
250MHz Input (1.5V Range, PGA = 1) 84 db



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4900
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 20:48. Заголовок: Nyquist's sampli..


Nyquist's sampling theorem states that if a signal is sampled at least twice as fast as the highest sampled frequency component, no information will be lost when the signal is reconstructed. The sample rate divided by two (Fs/2) is known as the Nyquist frequency and the frequency range from DC (or 0 Hz) to Fs/2 is called the first Nyquist zone.
####################################################################

Maxim Integrated Products has introduced the MAX109, which the company claims to be the industry's highest-performance, 8bit, 2.2GSps ADC. The device offers excellent wideband dynamic performance that has been optimized for capturing input frequencies in the second Nyquist zone, said Maxim.
##############################################

Fabricated using an advanced SiGe process, MAX109 integrates a high-performance track/hold (T/H) amplifier, a quantizer and a 1:4 demultiplexer on a single monolithic die. At a sample rate of 2.2GSps and an input frequency of 300MHz, the ADC achieves a spurious-free dynamic range (SFDR) of 62dBc and an SNR of 45dB. The SNR remains flat (within 1.6dB) for input frequencies all the way up to 2GHz.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4901
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 26.10.10 20:56. Заголовок: Full-scale SINAD and..


Full-scale SINAD and SNR, though adequate for single-tone input signals, can't provide the complete picture for the myriad signals and broad bands of spectrum present in wideband radios. Multiple-tone testing and SFDR power sweeps are more informative.

Sample rate: Many wide band radios mix down the RF spectrum to baseband (a range of signals from dc to some upper frequency) using wide-dynamic-range, ultra-high-intercept-point mixers such as the AD831 (Analog Dialogue 28-2, pp. 3-5). Converters for such radios require a sample rate at least twice the highest frequency (Nyquist rate), i.e., 20 MSPS minimum for signal range from dc to 10 MHz, and generally with at least 20% additional margin, raising the required encode rate to about 25 MSPS.

http://www.analog.com/library/analogDialogue/archives/29-2/wdbndradios.html<\/u><\/a>


Drive and filtering: An alternative to baseband sampling is to sample an IF signal that is in the second or third Nyquist zone [i.e., from (N-1)F(s)/2 to NF(s)/2]. Thus, the second Nyquist zone is from F(s)/2 to F(s) ; the third is from F(s) to (3/2)F(s). For F(s) = 25 MSPS, the second zone is 12.5 MHz to 25 MHz; the third is 25-37.5 MHz. Using a higher zone can greatly relax the driving amplifier's harmonic requirements because filtering is much easier for frequencies above the first Nyquist zone.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4902
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 27.10.10 11:59. Заголовок: Fastest ever 12bit A..


Fastest ever 12bit ADC
Steve Bush
Monday 24 May 2010 13:17
http://www.electronicsweekly.com/Articles/2010/05/25/48698/fastest-ever-12bit-adc.htm<\/u><\/a>

National Semiconductor is claiming a world record for its 3.6Gsample/s 12bit A-D converter.
#############################################################

"It is the fastest 12bit available," Paul McCormack, product marketing manager at the firm told EW. "The ADC12D1800 is 3.6 times faster than any other available 12bit device."
###################

On sdwoennij 2*1.8 gigasample .Konkurent Texas Instruments 1*1 gigasample

Designed at the firm's Munich office, the chip has been made on National's in-house 0.18µm CMOS process.
######################################################################

Texnologija 0.18 microna w Rossii dawno est

"It is just CMOS cells," said McCormack, "no bipolars and no exotics like SiGe."
##################################################
The device can be pin selected to operate as one 12bit 3.6Gsample/s converter, or two 12bit 1.8Gsample/s converters.

"There are two converters, interleaved internally," McCormack explained.

The architecture is folding and interpolating which is similar to the flash architecture, but re-uses comparators in several stages.
###################################################################################

In flash converters there is a single bank of one-comparator-per-output-level - over 4,000 for 12bits.
Click here for more information!

With far fewer comparators, the converter takes less power and occupies less die area.

However, because banks of comparators are reused, the conversion latency is longer than a flash converter - in this case, 13, 13.5, 14 or 14.5µs
############################################################################################
depending on demultiplexing ratio - see below.

Dynamic performance is: -147dBm/Hz noise floor, 52dB noise power ratio (NPR) and -61dBFS intermodulation distortion (IMD).

"The internal track-and-hold amplifier and self-calibration scheme enable a very flat response of all dynamic parameters for input frequencies exceeding 2GHz, while providing an 10-18 code error rate," said National.

The device is aimed at software-defined radios and can ingest the whole DC to 2.8GHz band through its 100Ω differential front-end.

Should buffering, single-ended to differential conversion, level shifting, or gain be required, the 2.8GHz bandwidth LMH6554 SiGe bipolar amplifier is available.

Data throughput is such that most DSPs would be swamped by the 12x3.6Gsample/s output.

"In most applications, the output of the ADC will go to an FPGA for digital down conversion before the DSP," said McCormack.

Although the output can be configured to deliver 12 bit of parallel data at 3.6Gbit/s, to ease data handling the chip has 96 LVDS data outputs on 192 pins.

"Operated as two converters across 96 outputs, the data rate drops to 900Mbit/s," explained McCormack.

Intermediate de-multiplexing values can be set, with the de-multiplexers delay being responsible for the device's variable latency.

Power consumption is 4.1W at 3.6Gsample/s, dropping linearly through 3.4W at 2Gsample/s

Applications are foreseen in satellite receivers, microwave backhauls for phone basestation, radar, and optical links.

"In next-generation multi-channel set-top box applications, one ADC12D1X00 can replace all of the tuners," claimed National. "Shifting such architectures to software-defined radio dramatically reduces board area, power consumption, and cost, while significantly improving system flexibility."

The ADCs run off a single 1.9V rail, and there are two slower versions: ADC12D1000 and ADC12D1600, offering 2x1 and 2x1.6Gsample/s respectively.

"They include circuitry for multi-chip synchronisation, programmable gain and offset adjustment per channel," said National.

Devices come in 292 ball, thermally enhanced BGA packages which are pin-compatible with the earlier 10bit ADC10D1000 and ADC10D1500.

Space-qualified version will be supplied in a hermetic 376 column, ceramic column grid array that meets radiation levels of 120MeV for single event latch-up and a total ionizing dose of 100Krads.

Production quantities are scheduled for the third quarter of 2010.

Price has yet to be disclosed.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4903
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 27.10.10 15:02. Заголовок: Folding interpolatin..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4904
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 27.10.10 15:07. Заголовок: If wide-bandwidth AD..


If wide-bandwidth ADCs are available, a single down-conversion can be used, as illustrated in Figure 1.2, thus improving the linearity of the receiver. Using such an approach, in a satellite communication system, with an RF 64QAM signal in the 10-30GHz range, one down-conversion results in an IF signal in the 1-3GHz range. In this case, the high-speed ADC must have an input bandwidth of 3GHz with a typical resolution of 8bits*. The sampling frequency of the ADC must be higher than the Nyquist rate to compensate for performance degradation near the Nyquist bandwidth.


*Higher-order modulation schemes (such as 256 QAM) impose more stringent requirements on the SNR performance of the ADC and thus resolution

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4907
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.10.10 20:19. Заголовок: http://cp.literature..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4908
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.10.10 20:29. Заголовок: http://phobos.iet.un..


http://phobos.iet.unipi.it/~barilla/pdf/FLASH_ADC_tutorial.pdf<\/u><\/a>

The first integrated circuit 8-bit video-speed 30-MSPS flash converter, the TDC1007J, was introduced
by TRW LSI division in 1979 (References 14 and 15).

But as mentioned earlier, full power bandwidths are not necessarily full resolution bandwidths. Ideally,
the comparators in a flash converter are well matched both for dc and ac characteristics. Because the
sampling clock is applied to all the comparators simultaneously, the flash converter is inherently a
sampling converter. In practice, there are delay variations between the comparators and other ac
mismatches which cause a degradation in the effective number of bits (ENOBs) at high input
frequencies. This is because the inputs are slewing at a rate comparable to the comparator conversion
time. For this reason, track-and-holds are often required ahead of flash converters to achieve high
SFDR on high frequency input signals.

The input to a flash ADC is applied in parallel to a large number of comparators. Each has a voltagevariable
junction capacitance, and this signal-dependent capacitance results in most flash ADCs having
reduced ENOB and higher distortion at high input frequencies. For this reason, most flash converters
must be driven with a wideband op amp which is tolerant to the capacitive load presented by the
converter as well as high speed transients developed on the input.


Power dissipation is always a big consideration in flash converters, especially at resolutions above 8
bits.

primer 8 bit flash ili paralelnij adc 2007 goda
#############################

The MAX109, 2.2Gsps, 8-bit, analog-to-digital converter (ADC) enables the accurate digitizing of analog signals with frequencies up to 2.5GHz. Fabricated on an advanced SiGe process, the MAX109 integrates a high-performance track/hold (T/H) amplifier, a quantizer, and a 1:4 demultiplexer on a single monolithic die. The MAX109 also features adjustable offset, full-scale voltage (via REFIN), and sampling instance allowing multiple ADCs to be interleaved in time.

The innovative design of the internal T/H amplifier, which has a wide 2.8GHz full-power bandwidth, enables a flat-frequency response through the second Nyquist region.

This results in excellent ENOB performance of 6.9 bits.
####################################
Iz 8 ostaetsja 6.9
dlja folding interolation National iz 12 bit ostaetsja 8.4 na 1448 mgz

http://datasheets.maxim-ic.com/en/ds/MAX109.pdf<\/u><\/a>



sowremennij processor SUN/Fujitsu rasseiwaet 58 watt pri 128 gigaflop
est kotorie rasseiwajut 100 watt

Esli mozno widerzat tochnost komparatorow
to sozdat 12 bit flas ADC (potr moschnost 6.8 *16 watt)
imeet smisl ?

budet dannoe reschenie lutsche chem folding /interpolating ?



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4909
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.10.10 20:59. Заголовок: http://china.maxim-i..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4910
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.10.10 22:30. Заголовок: Опытно-конструкторск..


Опытно-конструкторская работа №10
по созданию ультрабыстродействующего модуля аналого-цифрового преобразователя с большим динамическим диапазоном.


# Краткая характеристика:

Разработка внешнего модуля аналого-цифрового преобразователя DSP160x1-1220 с максимальной частотой дискретизации до 2ГГц и с разрешением АЦП 12 бит. Данный модуль позволит обеспечить мгновенный реальный динамический диапазон SFDR 63-65 дБ (1778 раз) в одновременной частотной полосе до 1000 МГц. Предварительная быстродействующая цифровая обработка сигнала (ЦОС), реализованная на ПЛИС типа XC4VLX160 или XC5V позволит обеспечить входную скорость данных в реальном масштабе времени. Возможность дополнительной обработки сигнала с помощью встроенного сигнального процессора типа TMS320C6415 (опционально). Габариты модуля 190х260х60, принудительная вентиляция, компьютерный интерфейс USB2.0.


# Основные задачи решаемые создаваемым оборудованием:

* Построение панорамных мониторинговых систем широкополосных сигналов.
* Построение радиотехнических систем с ПЧ до 1750 МГц и полосой одновременной обработки до 500 МГц.
* Многоканальные измерения и регистрация высокочастотных сигналов.
* Регистрация и обработка сигналов в реальном времени в большом динамическом диапазоне.
* Регистрация сигнала с высокой скоростью нарастания амплитуды по 1700 каналам.

# Экономические показатели:

* Срок реализации проекта 11 месяцев
* Планируемая рыночная стоимость OEM модуля - 1 299 000 рублей c 18% НДС
* Необходимый объем финансирования 19.5 млн. рублей




Первые результаты ОКР №10




Появились первые результаты выполнения ОКР №10 разработки и создании ультрабыстродействующего модуля АЦП.


Назначение. (Предварительные данные)


Внешний модуль быстродействующего АЦП DSP55x1-1220 предназначен для работы с широкополосными сигналами. Уникальное сочетание одновременно широкой обрабатываемой полосы до 1ГГц и высокого разрешения АЦП 12 бит позволяет данному модулю работать в качестве спектроанализатора и осуществлять режим панорамного мониторинга.


Отличительные характеристики:

* Максимальная частота дискретизации до 2.5 ГГц;
* Разрешение АЦП - 12 бит;
* SFDR 80 дБ(FS).

Предварительные технические параметры:

* Входной канал - 1 однополюсный;
* Входной амплитудный диапазон ±1В;
* Полоса входного сигнала 1 ГГц;
* Максимальная частота дискретизации - 2.5 ГГц;

http://www.centeradc.ru/stati/web-servisy/shirokopolosnye-priemnye-ustrojstva-svch-s<\/u><\/a>
* Разрешение АЦП - 12 бит;
* Режим работы памяти: история и предыстория;
* Буферная память - 131072 отсчета;
* Компьютерный интерфейс - USB2.0 (24МБ/с);
* PCI Express x1(200МБ/с), x8 (1.4ГБ/c).

Метрологические параметры модуля (в графиках)

http://www.centeradc.ru/nir-i-okr/okr-10/<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4911
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 29.10.10 11:40. Заголовок: ГЛАВА 3 АНАЛОГО-ЦИФР..


ГЛАВА 2
ДИСКРЕТНЫЕ СИСТЕМЫ
􀂄 Дискретизация аналоговых сигналов по времени
􀂄 Статические передаточные функции АЦП и ЦАП и погрешности по постоянному току
􀂄 Погрешности по переменному току в тракте преобразователя данных
􀂄 Динамические характеристики ЦАП
1


http://kim-mc.narod.ru/analog_devices/2.pdf<\/u><\/a>


ГЛАВА 3
АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ЗАДАЧ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ


АЦП последовательного приближения
􀂄 Сигма-дельта АЦП
􀂄 Параллельные (Flash) АЦП
􀂄 Конвейерные (Pipelined) АЦП
􀂄 АЦП последовательного счета (Bit-Per-Stage)
1


http://kim-mc.narod.ru/analog_devices/3.pdf<\/u><\/a>

ГЛАВА 5
БЫСТРОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ
􀂄 Дискретное преобразование Фурье
􀂄 Быстрое преобразование Фурье (БПФ)
􀂄 Аппаратное исполнение и тестирование БПФ
􀂄 Требования ЦОС для БПФ приложений в режиме реального времени
􀂄 Эффект расширение спектра сигналов при БПФ и использование взвешивания с функций окна
http://kim-mc.narod.ru/analog_devices/5.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4915
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 14:55. Заголовок: http://www.rfel.com/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4916
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 15:01. Заголовок: http://www.pentek.co..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4917
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 17:18. Заголовок: This is a real-life ..


This is a real-life example of the signal processing involved with a typical monopulse radar application. As shown in Figure 3, the system uses a multi-element antenna where the received signals consist of three types: Azimuth, Elevation and the sum of these two. The signals to be digitized and processed are as follows:


Azimuth difference or ΔA which is equal to A1 – A2
Elevation difference or ΔE which is equal to E1 – E2
Sum Channel Σ which is equal to the sum of A1 + A2 + E1 + E2
The phase shift between Σ and ΔE determines the elevation of the target
The phase shift between Σ and ΔA determines the azimuth of the target
The IF center frequency of these signals is 140 MHz and the IF bandwidth is 40 MHz
This signal processing requires three channels of A/D converters



Let’s assume that we want to track aircraft targets between a distance of 15 km and 45 km from the radar location. Radar signals travel at the speed of light which is equal to 300,000 km/sec.



For targets at 15 km, the round trip for the radar pulse takes 2 x 15 km ÷ 300,000 km/sec = 100 μsec. For targets at 45 km, the round trip takes 2 x 45 ÷ 300,000 km/sec = 300 μsec. Figure 4 shows the timing required to collect the data. Generate a 50 μsec pulse at T0; start collecting data at T = T0 + 100 μsec; stop collecting data at T = T0 + 300 μsec.









As shown in Figure 9, we chose the complex baseband signal to have 40 MHz bandwidth. When translated to the 140 MHz IF, the 40 MHz signal extends from 120 MHz to 160 MHz.
########################################
The output sampling frequency must be at least twice the 160 MHz highest frequency, or 320 MHz minimum. Let’s choose 400 MHz to be on the safe side, and use the interpolation filter and DUC to translate the baseband to the IF frequency.


Summary
The Pentek Model 71621 Transceiver XMC module is a complete radar signal generation, timing and acquisition subsystem. It has the three A/Ds required for monopulse radar and standard on-board support for signal generation and acquisition timing.

Radar data acquisition is facilitated by the 200 MHz, 16-bit A/Ds which capture the 140 MHz IF signals with 40 MHz
########################################################################

140 mgz centr PCH ,40 mgz polosa ot 120 mgz do 160 mgz
-----------------------------------------------------------------------

bandwidth. Wideband DDC IP cores convert the IF signals down to baseband. The A/D input controller engine uses a simple parameter table that creates programmable delays, acquisition record lengths and complex acquisition scenarios.

Radar waveform generation uses a D/A controller engine with a simple parameter table. It creates multiple waveforms with programmable delays and lengths. The wideband DUC upconverts the digital baseband waveform to 140 MHz IF and the 400 MHz, 16-bit D/A delivers 140 MHz IF signal with 40 MHz bandwidth.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4918
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 17:23. Заголовок: Radar data acquisiti..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4919
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 17:57. Заголовок: In the words of a us..


In the words of a user, Robert Sgandurra, Senior Product Manager with modular DSP and SDR developer Pentek (www.pentek.com), “TI continues to push the performance envelope with high-speed ADCs. The ADS5485 was a clear choice for our model 7150 Quad A/D Software Radio Module. The higher sample rate means that users will be able to directly digitize nearly 100 MHz of bandwidth, which is invaluable for our customers working on wideband radar and wideband communication systems.”

http://mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=20087<\/u><\/a>

ADS5485
An internal dither circuit can be switched on or off as needed to help improve SFDR performance

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4924
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 20:04. Заголовок: http://www.mhprofess..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4925
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 21:09. Заголовок: http://www.emrsdtc.c..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4926
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.10.10 21:19. Заголовок: DAnnie po dinamiches..


DAnnie po dinamicheskomu diapazonu woennogo radara USA


The AN/TPS-75 Radar System [ "Tipsy 75"] is a mobile, tactical radar system capable of providing radar azimuth, range, height, and Identification Friend or Foe (IFF) information for a 240-nautical-mile area. This deployable/transportable radar system is capable of providing long range radar data to support operations and control of tactical aircraft. The TPS-75 today forms the backbone of the US Air Force Air Defense system. The AN/TPS-75 Radar system provides a "real-time" radar airspace picture and data in support of the battle commander and the Ground Theater Air Control System (GTACS) via radio, telephone, microwave relay, or satellite communications link. The AN/TPS-75 radar system includes the UPX-27 IFF/SIF equipment, Tactical Air Operation Interface Gp OA 9194/TYQ-23(V)2, Modular Control Equipment Interface Group (MIG) and AN/TLQ-32 ARM Decoy. The AN/TPS-75 is a mobile ground radar set designed to conduct long-range search and altitude-finding operations simultaneously


Weight shelter - app. 8,400 pounds
antenna - app. 7,400 pounds
Pulse Repetition Frequency (PRF) 235, 250, 275 +/- 0.5 Hz fixed, and two selectable average PRFs; 250 and 275 staggered. For each staggered selection, the transmitter operates sequentially on one of seven PRFs.
Transmitter Characteristics peak power - 2.8 MW nominal
verage power - 4.7 kW nominal
pulse width - 6.8 +/- 0.25 microseconds

Receiver Characteristics type -seven logarithmic channels
sensitivity - negative 105 dB mds
dynamic range - 70 dB search, 70 dB height
intermediate frequency - 32 MHz
3-D Coverage (Search, Height and Range) azimuth - 360 degrees (operator controlled blanking optional)
elevation angles - 0.5 to 20 degrees above the radar horizon
maximum altitude - 95,500 feet
range - one to 240 nautical miles
scanning rate - approximately 6.5 rpm

dimensions 11 feet high by 18 feet 4 inches wide
polarization vertical beam width - 1.1 degrees horizontal and 1.55 degrees to 8.1 degrees with a total of 20 degrees (6 stacked beams)


------------

dynamic range - 70 dB search, 70 dB height

dinamicheskij diapazon sowremennix 16 bit ADC wische ...
*************************************************
+ NLEQ /nelinejnij equaliser iz Lincoln laboratory 12-24 db ...

http://www.fas.org/man/dod-101/sys/ac/equip/an-tps-75.htm<\/u><\/a>


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4927
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.10.10 19:49. Заголовок: Dannie 16 bit ADC ..


Dannie 16 bit ADC k 140 mgz centr PCH ,40 mgz polosa ot 120 mgz do 160 mgz
-----------------------------------------------------------------------

ADS5485 TI 200 msps AD9467 250 msps
SNR
130 mgz -74.8 db n/d
140 mgz - n/d 74.4/76 db
170 mgz -74.8 db 74.3db/75.8db
SFDR
130 mgz -85 db n/d
140 mgz -n/d 94/95 db
170 mgz -78 db 93/92 db
SINAD
130 mgz -72.9db n/d
140 mgz n/d 74.4/76 db
170 mgz -71.7 db 74.2db/75.8db
Price -125$
AD9467 po dinamicheskomu diapazonu lutsche - dlja primera pentek 92 db +
wiigrisch ot NLEQ Lincoln laboratory 12 db = 104 db

Xoroscho
--------





-----------------------------------------
Summary
The Pentek Model 71621 Transceiver XMC module is a complete radar signal generation, timing and acquisition subsystem. It has the three A/Ds required for monopulse radar and standard on-board support for signal generation and acquisition timing.

Radar data acquisition is facilitated by the 200 MHz, 16-bit A/Ds which capture the 140 MHz IF signals with 40 MHz
########################################################################

140 mgz centr PCH ,40 mgz polosa ot 120 mgz do 160 mgz
-----------------------------------------------------------------------

bandwidth. Wideband DDC IP cores convert the IF signals down to baseband. The A/D input controller engine uses a simple parameter table that creates programmable delays, acquisition record lengths and complex acquisition scenarios.

Radar waveform generation uses a D/A controller engine with a simple parameter table. It creates multiple waveforms with programmable delays and lengths. The wideband DUC upconverts the digital baseband waveform to 140 MHz IF and the 400 MHz, 16-bit D/A delivers 140 MHz IF signal with 40 MHz bandwidth.


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4928
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.10.10 20:21. Заголовок: THEORY OF OPERATION ..


THEORY OF OPERATION
The AD9467 architecture consists of an input-buffered pipe-lined ADC that consists of a 3-bit first stage, a 4-bit second stage, followed by four 3-bit stages and a final 3-bit flash. Each stage provides sufficient overlap to correct for flash errors in the preceding stage.
The input buffer provides a linear high input impedance (for ease of drive) and reduces the kick-back from the ADC. The buffer is optimized for high linearity, low noise, and low power. The quantized outputs from each stage are combined into a final 16-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample while the remaining stages operate with preceding samples. Sampling occurs on the rising edge of the clock.
Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched-capacitor DAC and an interstage residue amplifier (for example, a multiplying digital-to-analog converter (MDAC)). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The output staging block aligns the data, corrects errors, and passes the data to the output buffers.

http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf?ref=PR_9-27-10_AD9467<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4932
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 14:15. Заголовок: The V-Corp proprieta..


The V-Corp proprietary LinComp approach requires less hardware than phase-plane compensation and provides up to 24 dB or more reduction in harmonic distortion, does not require slope estimates, and is capable of super-Nyquist error compensation (i.e., direct synthesis of high IF data).

http://www.v-corp.com/lincomp.htm<\/u><\/a>


High-Performance Linearity Error Compensator (LinComp™)
Technical Description

The high-resolution Linearity Error Compensator (LinComp) is a computationally-efficient digital signal processing method for dramatically reducing harmonic and intermodulation distortion up to 24 dB. The technology is used to predict nonlinear distortion and subtract out the errors. LinComp significantly improves the performance of analog-to-digital converters (ADCs), digital-to-analog converters (DACs), sample-and-hold circuitry, buffer or power amplifiers, or the combination of these devices in an RF chain. This technology improves the dynamic range by up to four bits, enabling very accurate conversion and synthesis of data at high intermediate frequencies (IF) with very high sample rates (e.g., analog-to-digital conversion with > 12-bit dynamic range > 600 MHz IF). This unique technology is only available from V-Corp (U.S. Patent 6,198,416 and numerous patents pending).

V-Corp has confirmed the technical efficacy of the LinComp processing methodology via testing with real data from state-of-the-art ADCs, DACs, and power amplifiers. The LinComp processing performs in real-time and can be implemented in FPGA hardware, custom VLSI, a DSP chip, or a software algorithm. Since LinComp is a general linearity compensation method that is easily re-calibrated, systems using LinComp can easily be upgraded to higher performance by incorporating new converter or amplifier technology as it becomes available, thereby maintaining its significant performance advantage.

The LinComp technology enables direct sampling or digital synthesis at high IF frequency, which allows very accurate capture or synthesis of wideband data at high frequencies without necessitating the use of gigasample-per-second (GSa/s) sample rates or complex RF mixing electronics. The LinComp technology therefore reduces the size, power, and cost of transceivers by eliminating much of the RF electronics and reducing the digital signal processing requirements (by reducing the data rate from GHz speeds to MHz speeds).

Significantly Reduces Distortion in RF Chain (ADCs, DACs, Sampling Circuitry, Amplifiers or Complete RF Chain)

LinComp significantly improves the performance of analog-to-digital converters (ADCs), digital-to-analog converters (DACs), sample-and-hold circuitry, buffer amplifiers, and RF power amplifiers (e.g., Solid-State Power Amplifiers (SSPAs) and Traveling Wave Tube High-Power Amplifiers (TWT HPAs) ), or the combination of these devices in an RF signal chain (as shown in Figure 1-1 for a complete RF receiver chain and in Figure 1-2 for a complete RF transmit chain). Linearity errors cause harmonic distortion and intermodulation distortion which can limit the performance of state-of-the-art electronic systems, such as radar systems, digital transceivers for wireless communications, laboratory test equipment, medical imaging, and audio and video compression. Of particular interest is the ability to pre-compensate the transmit signal chain (especially the output power amplifier) to significantly reduce the need to lower the level of the RF power amplification to meet distortion specifications. This reduces the power rating and therefore the size, cost, and power consumption of the output power amplifier in transmitter systems. Reducing errors in digital-to-analog converters, analog-to-digital converters, sample-and-hold circuitry, and buffer and power amplifiers can significantly improve the performance of the critical conversion process.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4933
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 16:01. Заголовок: Dithering in ADC -p..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4934
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 16:04. Заголовок: A 5 Gsps 8-10 bit AD..


A 5 Gsps 8-10 bit ADC Platform Concept
for RF and Instrumentation Applications
François BORE,
e2v, avenue de Rochepleine, BP123,
38521 Saint-Egrève Cedex, France
www.e2v.com





http://www.armms.org/images/conference/5-5_gsps_adc_platform_concept_e2v.pdf<\/u><\/a>


There are two ways to increase sampling rate of ADCs: time interleaving of “reasonably fast” ADC or
building a faster ADC on a faster process. Each solution have of course drawbacks and advantages, we
have developed both solutions for different applications. In this paper we will focus on time
interleaving of ADCs, and requirement at ADC level and/or at system level to perform proper time
interleaving. We will also see why massive interleaving of “slow” ADC is not such a good idea.
Time interleaving of ADCs principle
Time interleaving of ADC is a very seductive concept yet its not so obvious to obtain acceptable
results, we will see why. The principle is to used m ADC (for practicable reason m is generally a
power of 2) to convert the same signal at the same sampling rate fs but with sampling instant shifted of
p/m (where p is individual sampling period, that is p=1/fs ), in order to get an equivalent ADC
sampling at fseq = m . fs .
In a perfect world this would work very well, but unfortunately we are in a real world with many nasty
effects such as component matching, noise, phase uncertainty, and even some times different thermal
drift. To achieve a correct time interleaved ADC (or TIADC, result of the time interleaving of m
ADCs) all these issues must be addressed.
First of all we must agree on what is a correct TIADC . A correct TIADC should give result
compliant with the system requirement, as would yield a simple fast ADC, if performances are
degraded by interleaving they should be recoverable through moderate digital processing overhead
(that is no useful information should be lost).
What are the requirement for interleaving ? At first order interleaving requires gain matching, offset
matching and phase alignment of the interleaved channel. This requirements must be fulfilled over the
full frequency range which means that bandwidths of the different channel should also be matched , or
that input must be kept well below bandwidth, so that gain are actually matched over the input
frequency range.
For clarity we will illustrate the cases of 4 interleaved ADCs with a pure sine as input, with ideal
response, raw converted signals (1024 point per ADC, and zoom on one input signal period), and
reconstructed signals (1 full period, and zoom on critical points). Then we will se impact on these
plots and investigate consequences imperfections in the interleaving in each case. Figures hereafter
are given with an 8 bit ADC, and an individual over sampling ration close to 2.


Source of degradations and proposed solutions:
There are two kinds of sources of degradation :
1. deterministic degradation which are easy to compensate in analogue world or to process in
digital world , for instance offset, gain, INL or sampling instant misalignment.
2. statistical random degradations: for instance thermal noise in the different signal paths or
uncorrelated phase noise for the different sampler.
We will first address the deterministic degradation and then we will see how to minimize effect of
statistical degradations.
Deterministic degradations
Offset mismatch errors
The first possible imperfection is offset mismatch of the 4 channels, this can be compensated in
analogue world thanks to the (digitally controlled) offset tuning of the ADCs or in the digital world in
the DSP (which implies slight overhead: adders), to avoid digital overhead it is always preferable to
perform this correction in analogue world.
If interleaving is done amongst different chips, differences in thermal management of the different
chips may requires offset recalibration when system temperature changes. In the case of a 2 or 4
channels interleaving using EV08AQ160, this is not needed thanks to the perfect temperature tracking
of the four ADCs on the same chip, and thanks to the flat response over temperature of offset tuning.
The effect of offset mismatch errors is independent of the over sampling ratio (OSR), it is the same
on any point of the curve. Offset mismatch errors don’t scale with input amplitude.

If offset matching errors are close to or larger than one LSB, they are clearly visible on reconstructed
signal, otherwise they might be wrongly interpreted as quantization errors. If they are of same order or
larger than thermal noise, the SNR of interleaved system will be degraded regarding the SNR of a
single core system. Even smaller errors have clear effect on signal spectrum, since they are
deterministic and their energy is concentrated in the same frequency slot (clock related spurs at fs or
n.fs depending of the error pattern, but independent of input signal amplitude), thus having an impact
on SFDR.
We can see clearly that offset matching requirement depends on ADC resolution.
E2V’s EV08AQ160 includes digitally controlled (through SPI) offset tuning fine enough (that is with
of a resolution between one fifth and one tenth of a LSB) so that no further digital processing is
needed for offset cancellation. Further more with the EV08AQ160 only one input is used for
interleaving of the 4 cores, that is absolute offset error of the external preamplifier or front-end will
not have any effect on interleaving process since the same error will be seen by the four ADC cores.
Gain mismatch errors
The second possible imperfection is gain error mismatch between the different interleaved channels.
Once again this can be compensated in the analogue world thanks to the (digitally controlled) gain
tuning of the ADCs or in the digital world in the DSP (which implies larger overhead than for offset
error cancellation: multipliers), to avoid digital overhead it is always possible to perform this
correction in analogue world.


If interleaving is done amongst different chips, differences in thermal management of the different
chips may requires offset recalibration when system temperature changes. In the case of a 2 or 4
channels interleaving using EV08AQ160, this is not needed thanks to the perfect temperature tracking
of the four ADCs on the same chip, and thanks to the flat response over temperature of gain tuning.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4935
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 19:07. Заголовок: http://lnxcorp.com/F..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4936
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 19:15. Заголовок: powtor s pomosch..


powtor

s pomoschju NLEQ MIT Lincoln laboratory wiigrisch po dinamicheskomu diapazonu


dlja

MAX108 8 -bit flash bipoljar -21 db
MAX109 8-bit flash SiGe -12 db /1.3 ghz
Atmel84sa008 10 bit folding SiGe -13 db/1.5 ghz 60db+13 db = 73 db
LTC2209 16 bit konweeernij 160msps dlja polosi 30 mgz(120-150 mgz) +12 db 84/88 db+12 =96/100 db

http://www.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4937
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 19:28. Заголовок: Adding the HMC660LC..


Adding the HMC660LC4B Track-and-Hold Amplifier to a lower bandwidth ADC allows the ADC to subsample a fairly broadband signal (for example, 1 GHz centered at 3.5 GHz) and then directly convert (or alias) it to baseband frequency for conversion by a lower-speed, high-resolution ADC.

When used with lower sample rate converters, the HMC660LC4B can provide an extension of input sampling bandwidth. When used with higher sample rate converters, the THA can provide improved high frequency linearity. For example, the linearity of even the highest speed, state-of-the-art AT84AS008 Atmel converter starts to significantly degrade above 2 GHz, and linearity is not specified above this frequency, even though the device supports an input bandwidth of 3.3 GHz. Since the full-scale input for this converter is 0.5 Vpp, the HMC660LC4B would operate at half-full-scale in this application (SFDR ~60 dB or better over the input band) and could provide both a bandwidth extension to 4.5 GHz, as well as improved high frequency linearity when used with this type of converter.

http://www.mpdigest.com/issue/Articles/2007/apr/Hittite/Default.asp<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4938
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 22:18. Заголовок: Schetwerennie wisoko..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4939
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.11.10 22:22. Заголовок: Military and space ..


Military and space

The military and space industries tend to favor high-speed ADCs reaching high-sampling frequencies beyond GSPS, using a single-core architecture and no hidden internal interleaving.
-------------------------------------

It is known that interleaving ADC cores in systems that are subject to wide temperature swings requires temperature monitoring and management of calibration and re-calibration each time the system is subject to significant temperature changes (see Ref 1). Therefore, data converters that achieve GSPS sampling rates with a single high-speed core and thus without using any interleaving techniques show nominal performance across their full temperature range without having to manage calibrations and without using FPGA processing power to remove interleaving spurs in the digital domain.

The contract awarded by the European Space Agency to e2v technologies to develop a 10-bit 1.5 GSPS (see Ref 2) will result in a data converter specifically designed to meet the requirements of the space industry and will indeed reach 1.5 GSPS without any internal interleaving and still meet low-power requirements.

The military industry welcomes both high-input frequencies and high-sampling rates without internal interleaving for the same reasons of performance across temperature range explained above. They are users of devices such AT84AS004, EV10AS150 and similar devices.

The GSPS data conversion industry is an area where CMOS and bipolar technologies still compete to some extent. The recent designs from e2v on both Infineon B7HF200 full bipolar process and Jazz Semiconductor high-speed BiCMOS processes achieve power consumption levels that are comparable to CMOS GSPS data converters, but with higher input bandwidths typical of fast bipolar technologies. Reduced supply current transients — such as with e2v’s EV10AQ190 and ADC cores — which can sample signals as fast as 2.5 GSPS without the use of any form of internal interleaving (such as e2v’s EV10AS150). On the other side, CMOS devices typically have a power consumption that is proportional to the sampling frequency and thus the nominal power consumption is reduced in applications where the ADC clock can be slowed down.

10-bit GSPS ADC-overview

10-bit GSPS ADC Typical Power consumption overview. Source: Suppliers datasheets published on their respective Web sites.

10-bit ADCs:

• EV10AQ190 Quad 10-bit 1.25-GSPS device from e2v technologies. BiCMOS process technology from Jazz Semiconductor; power consumption per channel sampling at 1.25 GSPS: 1.4 W /channel at 1.25 GSPS.

• ADC10D1000 dual 10-bit 1-GSPS ADC from National Semiconductor. Supplier’s own CMOS Process technology; power consumption per channel sampling at 1 GSPS: 2.77 W in total for 2 channels enabled or 1.61 W for single channel enabled.

For the foreseeable future, the choice of standard GSPS ADCs will continue to increase with a combination of additional integrated features, higher sampling rates and higher input bandwidths accommodating input signals frequencies well into the S-Band.

http://www2.electronicproducts.com/PrintArticle.aspx?ArticleURL=facn_e2V_oct2009.html<\/u><\/a>


more and more stringent — sampling rates, input frequencies and resolution all tend to increase.

Also, despite an exciting performance competition between today’s best amplifier manufacturers, high-speed differential amplifiers are already a limiting factor in terms of bandwidths, especially with system resolutions of 10 bits designed to digitize signals frequencies in the L-band and beyond. In these applications, only balun transformers provide the appropriate ADC input driver performance. Unfortunately, dc coupling is not possible when transformers are used as differential ADC input drivers. So, as of today, designers of high-speed and high-frequency data conversion systems need to make a choice for each channel between dc coupling but with limited bandwidths — typically up to 1 GHz, depending on the chosen amplifier and its operating conditions — and high input frequencies (but only in ac-coupling mode).

Typically, high-speed amplifiers demonstrate best harmonic-distorsion performance versus frequency with reduced output voltage swings (see Ref. 3). Thus, applications that require dc coupling at the highest possible input frequency will benefit from selecting an ADC with reduced input-voltage range, since this will translate directly into a reduced output voltage swings for the differential amplifiers.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4940
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.11.10 00:06. Заголовок: Sandia patent 8 bit..


Sandia patent 8 bit flash Max108 w SAR
http://www.freepatentsonline.com/6864827.html<\/u><\/a>

http://www.freepatentsonline.com/6864827.pdf<\/u><\/a>

ADC sample rate (chastota diskretizacii) -1 ghz
Maximum IF polosa -222 mgz
Minimum -3.5 mgz

1 IF/Pch -4000 mgz
2 IF/Pch -250 mgz

SAR receiver employing strech processing
############################
(RF bandwitch compression or deramp mixing)

MAX108

SNR -46.9db ,1 gigasample ,125-375 mgz signal ,full input
ENOB-7.5 bit
SFDR 60 db
THD -53 db worst case 125 mgz -375 mgz

Dannij patent werojatno ispolzowan w SAR Sandia ,snimki woennoj texniki s razr. 100 mm nize

http://www.youtube.com/watch?v=aPgLx476TlQ&feature=related<\/u><\/a>

Lt. Col. Brandon Baker, commander of Detachment 3, 9th Operations Group, recaps preparations made at Andersen Air Force Base, Guam, for the arrival of assigned Global Hawk Remotely Piloted Aircraft (RPAs) later in 2010.
#####################################################################

W broschure po Global Hawk RQ-4 block 20

http://www.as.northropgrumman.com/products/ghrq4b/assets/GH_Brochure.pdf<\/u><\/a>

rasreschajuschaj sposbmsot Radara danna - 1/ 0.3 metra

na linke Sandia Lab snimki s razreschajuschej sposonostju 10 santimetrow
####################

Mozete posmotret

http://www.sandia.gov/RADAR/images/ka_band_portfolio.pdf<\/u><\/a>


Rjad video s raschreschajuschej sposobnostju 30
santimetrow i 1 metr
tam ze

http://www.sandia.gov/RADAR/movies.html<\/u><\/a>

###################################

Automatic Target
Recognition
http://www.sandia.gov/atr/<\/u><\/a>


Scalable Real-Time System

ATR real-time requirements include both high throughput rate and low latency. For conventional image sizes, the latency between receipt of the SAR image and ATR results is typically less than 10 seconds. The basic configuration of our all-COTS real-time ATR has 12 PowerPC 300 MHz CPUs and can process imagery at the rate of one Megapixel per second for 10 targets of interest. The CPU requirements of our ATR system scale linearly with respect to pixel rate and number of targets. The 6U VME rack shown above can accommodate 64 CPUs, which enables us to upgrade the system to allow data rates as high as five Megapixels per second for 10 targets of interest or 50 targets of interest at one Megapixel per second without changing the 3.5 ft3 size of the ATR system. Upcoming advances in CPU performance will triple our current capabilities by the end of the year 2000.
------------------------

ATR Experience

Sandia's Signal and Image Processing Department has designed ATR algorithms for SAR sensors since 1986. We were the first to demonstrate real-time SAR ATR capability in 1991, on board the Department of Energy's De Havilland DHC-6 Twin Otter aircraft. Since then, Sandia has been the leader in SAR ATR technology, integrating the latest hardware with innovative recognition algorithms.
########################################

ABSTRACT
This paper describes the Twin-Otter SAR Testbed
developed at Sandia National Laboratories. This SAR is a
flexible, adaptable testbed capable of operation on four
frequency bands: Ka, Ku, X, and VHF/UHF bands. The
SAR features real-time image formation at fine resolution
in spotlight and stripmap modes. High-quality images are
formed in real time using the overlapped subaperture
(OSA) image-formation and phase gradient autofocus
(PGA) algorithms.

http://www.sandia.gov/RADAR/files/igarss96.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4943
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.11.10 00:29. Заголовок: Signal processing de..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4945
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.11.10 13:47. Заголовок: http://microelectron..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4946
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.11.10 19:24. Заголовок: New Products 10bit 2..


New Products
10bit 2.5Gs/s ADCs for high RF sampling applications
October 16, 2009 | | 220601094
e2v, has announced production of a 10bit 2.5Gs/s analog to digital converter (ADC) incorporating 5GHz analog input bandwidth for operation over the L-band and S-band frequencies.
Chelmsford, UK - e2v, has announced production of a 10bit 2.5Gs/s analog to digital converter (ADC) incorporating 5GHz analog input bandwidth for operation over the L-band and S-band frequencies. The EV10AS150ATP ADC is being exhibited at the International Radar Conference, RADAR'09 in Bordeaux, France.

This device's high sampling rate of 2.5Gs/s suits it to applications such as high speed test instrumentation, automatic test equipment (ATE), high speed data storage, software defined radio, radar and flight simulators and wideband satellite receivers. The company points out that the device will enable designers to process 1GHz of IF analogue signal, without needing multiple down-conversion stages.

The EV10AS150ATP series – the first in a family of pin-compatible 10bit ADCs – boasts a spurious free dynamic performance of 60dB and 52dB signal to noise ratio (SNR). According to e2v, IMD3 is 60dBc, whilst it's effective number of bits (ENOB) is 8.1bits. The EV10AS150ATP, which comes in a EBGA 317 pin package (25 x 35mm) is made using Infineon's high-speed bipolar SiGe silicon technology, with both commercial and industrial grade versions now available.

e2v wins ESA's ADC contract

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4947
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.11.10 19:30. Заголовок: http://www.alcom.be/..


http://www.alcom.be/binarydata.aspx?type=doc/e2V_EV10AS150A.pdf<\/u><\/a>


Features
• ADC 10-bit Resolution
• Up to 2.5 Gsps Sampling Rate
• Selectable 1:4 or 1:2 Demultiplexed Digital LVDS Outputs
• True Single Core Architecture (No Calibration Required)
• External Interleaving Possible Via 3-Wire Serial Interface
– Gain Adjust
– Offset Adjust
– Sampling Delay Adjust
• Full Scale Analog Input Voltage Span 500 mVpp
• 100Ω Differential Analog Input and Clock Input
• Differential Digital Outputs, LVDS Logic Compatibility
• Low Latency Pipeline Delay
• Test Mode for Output Data Registering (BIST)
• Power Supplies: 5.0V, 3.3V, 2.5V
• Power Management (Nap, Sleep Mode)
• EBGA317 (Enhanced Ball Grid Array) Package
Performance
• Single Tone Performance in 1st Nyquist (–1 dBFS)
– ENOB = 7.7 bit, SFDR = –56 dBFS at 2.5 Gsps, Fin = 500 MHz
– ENOB = 7.8 bit, SFDR = –58 dBFS at 2.5 Gsps, Fin = 1245 MHz
• Single Tone Performance in 2nd Nyquist (–3 dBFS):
– ENOB = 8.0 bit, SFDR = –60 dBFS at 2.5 Gsps, Fin = 2495 MHz
• 5 GHz Full Power Input Bandwidth (–3 dB)
• ±0.5 dB Band Flatness from 10 MHz to 2.5 GHz
• Input VSWR = 1.25:1 from DC to 2.5 GHz
• Bit Error Rate: 10–12 at 2.5 Gsps
• No Missing Codes at 2.5 Gsps, 1st and 2nd Nyquist
Screening
• Temperature Range
– Commercial “C” Grade: Tamb > 0°C ; TJ < 90°C
– Industrial “V” Grade: Tamb > –40°C ; TJ < 110°C

Applications
• Direct Broadband RF Down Conversion
• Wide Band Communications Receiver
• High Speed Instrumentation
• High Speed Data Acquisition Systems
1. Block Diagram
The EV10AS150A combines a 10-bit 2.5 Gsps fully bipolar analog-to-digital converter chip, driving a fully bipolar DMUX
chip with selectable Demultiplexing ratio (1:2) or (1:4). The 5 GHz full power input bandwidth of the ADC allows the direct
digitization of up to 1 GHz broadband signals in the high IF region, in either L_Band or S_Band. The EV10AS150A features
7.8 effective bit and close to –58 dBFS spurious level at 2.5 Gsps over the full 1st Nyquist for large signals close to ADC Full
Scale (–1 dBFS), and 8.0 Bit ENOB at –3 dBFS in the 2nd Nyquist zone.
The 1:4 demultiplexed digital outputs are LVDS logic compatible, which allows easy interface with standard FPGAs or
DSPs. The EV10AS150A operates at up to 2.5 Gsps in DMUX 1:4 and up to 2.0 Gsps in 1:2 DMUX ratio (The speed limitation
with 1:2 DMUX ratio is mainly dictated by external data flow exchange capability at 2 × 1 Gsps with available FPGAs).
The EV10AS150A ADC+DMUX combo device is packaged in a 25 × 35 mm Enhanced Ball Grid Array EBGA317. This
Package is based on multiple layers which allows the design of low impedance continuous ground and power supplies
planes, and the design of 50Ω controlled impedance lines (100Ω differential impedance). This package has the same Thermal
Coefficient of Expansion (TCE) as FR4 application boards, thus featuring excellent long term reliability when submitted
to repeated thermal cycles.


Power dissipation do 8 watt
clock jitter do 120 femtosec (internal)


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4954
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 00:26. Заголовок: IF undersampling Th..


IF undersampling

The IF undersampling technique has long been sought as a means for reducing the complexity of a receiver design. In fact, sampling as close to the antenna as possible offers the possibility of reducing the size and complexity of the receiver function in a system. Most modern cellular base stations implement IF sampling allowing one or more IF stages to be eliminated from their system reducing both cost and complexity.

While IF undersampling does reduce overall system cost, there is a performance trade off in that IF undersampling ADCs in the past have generally resulted in lower performance than baseband sampling ADCs.
#########################################################


Over the past few years, this requirement has driven the demand for high-performance IF sampling ADCs and are now available that are optimized for SNR and SFDR for frequencies as high as 450 MHz.

http://mobiledevdesign.com/software_design/radio_understanding_state_art/index1.html<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4955
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 00:29. Заголовок: Sample rate Sample ..


Sample rate

Sample rates are driven by several factors. The largest driver is to have a sample rate that is an integer multiple of common data rates for communication standards. For example, CDMA2000 has a base symbol rate of 1.2288 MHz, WCDMA has a base rate of 3.84 MHz and TD-SCDMA has a base rate of 1.28 MHz. Based on these rates, common sample rates of 78.6, 92.16, 122.88 and 245.76 megasamples per second (Msps) are common. As in the past, the ADC technology determines the preferred sample rate. And over the past few years, the preference is to run above 80 Msps in most new designs.

Higher sample rates do improve noise performance of ADCs. While the overall integrated noise does not improve, the distribution of the noise over wider bandwidths does offer improvements in noise spectral density (NSD). The lower the noise spectral density, the more sensitive a receiver can be designed. This process is often referred to as processing gain and is nothing more than distributing the same noise over a wider band of frequencies and then digitally filtering out the noise in the frequency bands that are not of interest. Doubling the sample rate can improve the noise spectral density by a factor of 3 dB resulting in a significant improvement in performance of many systems.

However, there are limits to how much sample rates can be increased. Current FPGA[1] and ASIC[1] technology limits CMOS[1] data rates to about 250 MHz, LVDS[1] to approximately 800 MHz and PECL[1] to approximately 1.5 GHz. Other logic schemes such as CML[1] offer the possibility of even higher rates. While some applications have moved to LVDS and PECL, the bulk of applications are implemented in CMOS. This will change in the future, but for now, the mainstream driving applications are still CMOS.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4956
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 00:39. Заголовок: primer priemnik s ..


primer

priemnik s prjamoj podachej RF signala na wxod AZP

http://winradio.com/home/g31ddc.htm<\/u><\/a>

9 kHz to 49.995 MHz continuous frequency range
Direct sampling
Digital down-conversion
16-bit 100 MSPS A/D conversion
50 MHz-wide, real-time spectrum analyzer
2 MHz recording and processing bandwidth
Three parallel demodulator channels
Waterfall display functions
Audio spectrum analyzer
Audio and IF recording and playback
Recording with pre-buffering
EIBI, HFCC and user frequency databases support
Very high IP3 (+31 dBm)
Excellent sensitivity (0.35 µV SSB, 0.16 µV CW)
Excellent dynamic range (107 dB typ.)
Selectable medium-wave filter
USB 2.0 interface

dlja srawnenija priemnik toj ze firmi no s F/promezutochnoj chastotoj

http://winradio.com/home/g313e.htm<\/u><\/a>

The WiNRADiO WR-G313e is a software-defined high-performance HF receiver (9 kHz to 30 MHz, optionally extendable to 180 MHz) with a USB interface, an external version of the acclaimed WR-G313i receiver.

The receiver is extremely sensitive, making it possible to comfortably read CW signals under 0.05 µV input levels, yet featuring a respectable 95 dB dynamic range making the receiver resistant to strong signal overload. The high sensitivity is also matched by that of the S-meter: The fully calibrated S-meter shows the received signal levels in dBm, µV or S-units, down to the ‑140 dBm noise


There are numerous demodulation modes, continuously variable IF bandwidth 1 Hz to 15 kHz (in 1 Hz increments), a 20 kHz wide real-time spectrum analyzer with 16 Hz resolution, noise blanker and notch filter. There is also an integrated recorder, making it possible to instantly record and playback the received signal.

Apart from audio recording and playback, the receiver can also record an entire 20 kHz wide IF spectrum, making it possible to thoroughly analyze the received signal, and "re-receive" the same signal again and again with different IF filter bandwidths, notch filter, noise blanking or demodulator settings, to arrive at the best possible reception of weak or interference-prone transmissions.

In addition to the real-time narrow-band spectrum analyzer, there is also a wide-band spectrum analyzer which contains additional professional instrumentation facilities: the ability to display minimum and maximum spectrum sweeps, search for peaks, average spectra, save and print spectra, marker mode, etc.

Another useful feature, previously unavailable with receivers of this price class, is a test and measurement facility, performing measurements on the received signal including frequency accuracy, amplitude modulation depth, frequency deviation, THD (total harmonic distortion) and SINAD. An audio spectrum analyzer is also included, making it possible to observe the demodulated spectrum in real-time with a resolution of 5 Hz.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4958
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 12:56. Заголовок: Stat*ja Triquint (G..


Stat*ja Triquint (GaAS dlja Radarow ,kommunikazij) i Watkins Johnson o dinamicheskom diapazone
priemnikow

https://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n1.pdf
https://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n2.pdf

http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n1.pdf<\/u><\/a>
http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n2.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4959
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 13:48. Заголовок: Powtor Linkoln l..




Powtor

Linkoln laboratory Radar open system architecture

A High Dynamic Range Receiver for the Radar
****************************************
Open System Architecture

2008

X-Band Receiver
The MITEQ X-Band receiver is of a dual
conversion superheterodyne architecture that
translates a 10 GHz signal with a bandwidth
of 1 GHz to an IF center frequency of 70 MHz
and a bandwidth of 20 MHz for stretch processing
of radar returns. The receiver also
includes a wideband IF output at 1 GHz for
use with advanced high speed ADC (analog to
digital converter) processing techniques such
as optical processing, time sequenced ADC
arrays, or time stretched ADC arrays


http://highfrequencyelectronics.com/Archives/May08/HFE0508_Cannata.pdf<\/u><\/a>

1.Peak Pulse Detection and
Delayed AGC
A built-in SDLVA (successive
detection log video amplifier) provides
detection of the filtered IF output
signal over an 80 dB dynamic
range,
------------
and an on-board ADC digitizes
the video signal and performs peak
detection within a gate (or windowing)
pulse signal provided by the
radar platform. The resulting peak is
read by the system between pulses,
which subsequently commands the
on-board gain control over the
VMEbus to set the receiver’s sensitivity
for the next pulse, a process commonly
referred to as delayed AGC.
-----------------------------------

2.Digitally Calibrated Attenuator
Gain control for the receiver is
provided by a voltage-controlled
microwave attenuator. The attenuator
attenuator
is driven by an on-board DAC
(digital to analog converter). The
attenuator provides 40 dB of additional
----------------------------------------------
dynamic range for the receiver,
and is capable of being set prior to
reception of each radar pulse to optimize
the dynamic range of the system.
As the target approaches, the
system will sense higher peak signal
strength, and then reduce the receiver’s
gain.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4960
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 16:09. Заголовок: High-Dynamic-Range R..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4964
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 16:20. Заголовок: powtor 2008 105 db..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4967
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.11.10 16:30. Заголовок: powtor k stat'e ..


powtor k stat'e wische

http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf<\/u><\/a>


A 16-bit ADC is used to capture the (C Band) transmit
pulse after down conversion to IF. This adequately records
the start pulse for synchronization and associated signal
phase for demodulation.
However, the input RF return signal has a dynamic
range of 105 dB, which is greater than the (ideal theoretical)
dynamic range for any commercial, high-speed ADC
(limited to 16 bits). This dynamic range requires a 20-bit
ADC as shown. To provide this capability, the normal input
signal range is extended using instantaneous automatic
gain control (AGC) as part of the digital signal processing
(DSP) function.
ADC Dynamic Range
An ideal ADC has an SNR equal to 6.02 × N + 1.76 dB,
where N is equal to the number of bits. For a 16-bit converter,
this translates to 98 dB, which is the maximum
(ideal theoretical) limit for input signal dynamic range.
However, for high speed converters this ideal SNR is never
achieved due to other issues which conspire to limit the
SNR to a much lower value. These issues include ADC nonlinearity,
front end amplifier noise and sample clock jitter.
A typical SNR value for a high-speed (120 MHz sample
rate) ADC is about 76 dB, which is well below the theoretical
limit.


For example, assume an input signal of 30 MHz and a
required SNR of 80 dB. This, in turn, requires a clock with
jitter of no more than 531 picoseconds. This assumes an
ADC SNR that is much better than 80 dB, making jitter the
limiting factor.
Clocks and oscillators are often specified in terms of
phase noise rather than timing jitter. The two are similar,
and phase noise can be converted to jitter. Raltron offers a
Web-based calculator [2] for this purpose


Wide Dynamic Range Digitizing
As mentioned previously, recording weather radar signals
requires a minimum of 105 dB of dynamic range. Since
the dynamic range of available high speed ADCs is limited
to 90 dB (with processing gain), with further reductions
down to 80 dB due to the clock source (jitter), a simple ADC
is not sufficient.
##############

Symtx Inc. has implemented a dual ADC scheme to
increase digitizer dynamic range as shown in Figure 3.
###################################
The
design uses a high-gain channel to process low-level signals
and a low-gain channel to process high-level signals,
with simultaneous sampling of both channels in parallel.
The gain difference between the high-level and low level
ADCs is compensated with an appropriate n-bit left shift
to give the correct scaling.
##################


A DSP after the two ADCs then
selects the correct ADC output, adjusts for gain, and
merges the two to create a 20-bit word with the desired
dynamic range.
The process is essentially an instantaneous AGC which

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4969
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 00:36. Заголовок: ABOUT GMR office GM..


ABOUT GMR
office
GMR Research & Technology in Acton, MA.

GMR Research & Technology is a small, privately owned company located in Concord, Massachusetts and Acton, Massachusetts. Founded in March 2004 by Dr. Gil M. Raz, GMR is developing innovative nonlinear signal processing techniques to improve high-speed communications and surveillance systems.

An example of the GMR innovations includes a proprietary method for parsimoniously achieving several orders of magnitude measured improvement in linear dynamic range for very wideband RF sensors. This method requires no changes in the analog front-end of the sensor system and is performed entirely in the digital domain after sampling. These results were achieved in collaboration with MIT - Lincoln Laboratory. This technology is currently funded to be inserted into sensor system platforms built at the Northrop Grumman Corporation.
-----------------------------------------------------------------------------------------------------------

GMR is actively developing and securing intellectual property for solving problems difficult or intractable for traditional signal processing. GMR has several patents pending including one for its Non-Linear Affine Transform technique (NoLAff).
http://gmrtech.com/about.html<\/u><\/a>

http://www.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4974
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 15:20. Заголовок: 16 bit AD9467 2..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4975
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 19:16. Заголовок: http://pstca.com/pdf..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4976
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 19:24. Заголовок: There are also other..


There are also other advantages gained by increasing sampling frequency. Over-sampling signals also enables processing-gain benefits in the digital domain with the use of digital filtering. This is because the ADC noise floor can be spread over a larger output bandwidth. Doubling the sampling rate, for a fixed input bandwidth, results in a 3 dB improvement in dynamic range. Every further doubling of the sampling frequency provides an additional 3 dB of dynamic range


http://www.analog-europe.com/en/solutions_for_time_interleaving_ultra-high-speed_adcs_at_the_pcb_level?cmp_id=7&news_id=221601117<\/u><\/a>


Figure 1 illustrates the benefit in doubling sampling frequency in an oscilloscope front-end. The 6 Gsps sampled waveform is a much more accurate representation of the sampled analog input. Many other test instrumentation systems, such as mass spectrometers and gamma ray telescopes, depend on high over-sampling to FIN ratios for pulse-shape measurement.


Home » News » Full News
Print - Send - -
Technology News
Solutions for time interleaving ultra-high-speed ADCs at the PCB level
November 04, 2009 | | 221601117
This article explores the inherent technical challenges associated with time interleaving ADCs and provides useful system-design guidelines.
--------------------------------------------------------------------------------

Synchronously sampling analog signals with time-interleaved analog/digital converters (ADCs) at billions of times per second is a considerable technical challenge, and requires very carefully designed mixed-signal circuits. In essence, the goal of time interleaving is to multiply the sampling frequency by the number of converters used, but without impacting resolution and dynamic performance.


This article explores the inherent technical challenges associated with time interleaving ADCs and provides useful system-design guidelines. New and innovative component features and design techniques that address the known issues are presented. Measured FFT results from a 7 Gsps (gigasamples per second), two-converter chip 'interleaved solution' are provided. Finally, applications-support circuitry necessary to achieve high performance is described, including clock sources and drive amplifiers.



Increasing need for higher sampling speeds
When and why is it an advantage to increase sampling frequency? There are several answers to this question. Essentially an ADC's sampling speed directly determines the instantaneous bandwidth that may be digitized in one sampling instant. The Nyquist and Shannon sampling theorems state that the maximum available sampling bandwidth (BW) is equal to half the sample frequency (Fs).



A 3-Gsps ADC enables 1.5 GHz analog-signal spectrum to be sampled in one sampling period. Doubling the sampling speed also doubles the Nyquist bandwidth to 3 GHz. The resultant multiplication in sampling bandwidth gained by time interleaving is beneficial in many applications.



For example, radio-transceiver architectures can increase the number of information signal carriers, and therefore, system data throughput can be expanded. Increasing Fs also improves resolution in laser imaging detection and ranging (LIDAR) measurement systems, which operate on the principle of time of flight (TOF). The uncertainty in TOF measurements can be reduced by decreasing the effective sampling-clock period.


Summary 2009 god

The challenges associated with interleaving high-speed ADCs and several approaches to addressing these issues have been presented. Maintaining excellent dynamic performance beyond 6 Gsps is now possible due to advancements in interleaving methodologies, low-jitter clock sources and high-performance amplifiers.



About the author
Paul McCormack is a senior applications engineer in National Semiconductor Corporation's High-Speed Signal Path Group in Europe. He received his Masters degree in Electrical and Electronic Engineering from the Queen's University of Belfast.






Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4977
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 19:50. Заголовок: interleaved ADC res..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4978
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 19:56. Заголовок: dlja srawnenija not..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4979
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 22:20. Заголовок: radioljubitelskaja t..


radioljubitelskaja tochka zrenija na dinamicheskij diapazon ...

toze polezna ,kak i rekord na 10 ghz s 10 watt 90 santimetrow diametrom antennoj -2000 km


Conclusions
When using the concept of dynamic
range in Amateur Radio, we should
refer to signals present simulta-
neously at the antenna input. This
means that BDR — implying that
blocking means that the ability to copy
the desired signal as blocked by a
strong off-channel signal — for the
FT-1000D is 96.5 dB. When the de-
sired signal is placed at –77 dBm (see
Note 2), the point of saturation, which
was +20 dBm in QST (see Note 3) has
to be compared to –77 dBm for a dy-
namic range of 97 dB,
----------------------------------------

not to the MDS
value measured under quite different
circumstances. The value of 150 dB
reported in QST is not the dynamic
range for two simultaneously present
signals.
-------------------------------------------

It is the dynamic range for a
single signal and is not of much inter-
est to a radio amateur.


http://www.sm5bsz.com/dynrange/qex/bdr.pdf<\/u><\/a>


Blocking Dynamic
Range in Receivers
An explanation of the different procedures and
definitions that are commonly used for blocking
dynamic range (BDR) measurements.
By Leif Åsbrink, SM5BSZ



Human sensors like
the ears and the eyes have very large
dynamic ranges, for example. The un-
damaged ear can detect a 1 kHz sound
wave at a level of 10–12 W/m2 while the
upper limit is about 1 W/m2, where we
start to feel pain. The dynamic range
of our ears is thus about 120 dB. Our
eyes can detect the light from a star
in the dark sky when about ten pho-
tons per second reach the retina,
which converts to something like
10–13 W/m2. The Sun, with its 300 W/
m2, does not damage our eyes unless
we look straight into it.
Another example of dynamic range
is the dynamic range of a vinyl music
record. It may be on the order of 60 to
80 dB only, much less than the dy-
namic range of our ears.


The above examples show the dy-
namic range for a single signal.
#####################
The
corresponding dynamic range for a
receiver is not particularly interesting.
##########################


Any room-temperature resistor pro-
duces a noise voltage that would trans-
fer –174 dBm/Hz to a matched cold
resistor.
#########################

With the RF preamplifier dis-
abled, a typical HF receiver may pro-
duce 20 dB more noise with a room-
temperature dummy load at the input
than would an ideal receiver that
would not add any noise of its own
(only amplifying the noise from the
dummy load). A receiver adding 20 dB
of noise is said to have a noise figure
of 20 dB. If the bandwidth were
500 Hz, the noise floor referenced to
the antenna input would be –174 + 20
+ 27 dBm = –127 dBm. (Note that 10
log 500 ≈ 27.) This signal level is some-
times improperly called MDS (mini-
mum discernible signal) for such a
typical receiver, even though a CW
operator would easily copy a signal
that is 10 dB weaker.
Picking the noise floor as the low
end of the dynamic range is typical for
all dynamic ranges, not only in radio
receivers. The noise floor power is pro-
portional to the bandwidth and there-
#########################

fore a receiver will have 10 dB more
dynamic range when measured at a
bandwidth of 200 Hz compared to
when it is measured at a bandwidth
of 2 kHz.
#######################

It is the same receiver,
though, and the dynamic range differ-
ences that depend on bandwidth
should not be included when different
receivers are compared.
For that reason, receivers should


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4981
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 22:37. Заголовок: www.ece.uah.edu/cour..


http://www.ece.uah.edu/courses/material/EE710-Merv/Stretch.doc<\/u><\/a>

Stretch processing is a way of processing large bandwidth waveforms using narrow band techniques


The form of means that the signal processor (i.e. matched filter) would need to have a bandwidth of . Herein lies the problem: large bandwidth signal processors are still difficult and very costly to build. Two methods of building LFM matched filters (LFM pulse compressors, LFM signal processors) are SAW (surface acoustic wave) devices and digital signal processors. According to the Skolnik Radar Handbook (page 10.11) one can build SAW compressors for bandwidths up to 1 GHz. However, I have not heard of hardware implementations with such devices. I would expect that the upper limit on bandwidth for practical SAW LFM compressors is in the 10s , or possibly low 100s, of MHz.

Stretch processing relieves the signal processor bandwidth problem by giving up all-range processing to obtain a narrow band signal processor. If we were to use a matched filter we could look for targets over the entire waveform pulse repetition interval (PRI). With stretch processing we are limited to a range extent that is usually smaller than a pulse width. Thus, we couldn’t use stretch processing for search because it requires looking for targets over a large range extent, usually many pulse widths long. We could use stretch processing for track because we already know range fairly well but want a more accurate measurement of it. We must point out that, in general, wide bandwidth waveforms, and thus the need for stretch processing, is “overkill” for tracking. Generally speaking, bandwidths of 1s to 10s of MHz are sufficient for tracking


In the above discussion, we have focused on the signal processor and have argued, without proof at this point, that we can use stretch processing to ease the bandwidth requirements on a signal processor used to compress wide bandwidth waveforms. Stretch processing does not relieve the bandwidth requirements on the rest of the radar. Specifically, the transmitter must be capable of generating and amplifying the wide bandwidth signal, the antenna must be capable of radiating the transmit signal and capturing the return signal, and the receiver must be capable of heterodyning and amplifying the wide bandwidth signal. This poses stringent requirements on the transmitter, antenna and receiver but current technology has advanced to be point of being able to cope with the requirements.



STRETCH PROCESSOR IMPLEMENTATION
We next want to turn our attention to practical implementation issues. The mixer, timing and heterodyne generation are reasonably straight forward. We want to address how to implement the spectrum analyzer. The most obvious method of implementing the spectrum analyzer is to use an FFT. To do so, we need to determine the required ADC (analog-to-digital converter) sample rate and the number of points to use in the FFT. To determine the ADC rate we need to know the expected frequency limits of the signal out of the mixer1.


We will assume base-band processing in these discussions. In practice the mixer output will be at some intermediate frequency (IF). The signal could be brought to base-band using a synchronous detector or, as in some modern radars, by using IF sampling. In either case, the effective ADC rate (the sample rate of the complex, digital base-band signal) will be as derived here.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4982
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 22:49. Заголовок: By 1972, fabrication..




Radar Signal Processing
Robert J. Purdy, Peter E. Blankenship, Charles Edward Muehe,
Charles M. Rader, Ernest Stern, and Richard C. Williamson
s This article recounts the development of radar signal processing at Lincoln
Laboratory. The Laboratory’s significant efforts in this field were initially driven
by the need to provide detected and processed signals for air and ballistic missile
defense systems. The first processing work was on the Semi-Automatic Ground
Environment (SAGE) air-defense system, which led to algorithms and
techniques for detection of aircraft in the presence of clutter. This work
was quickly followed by processing efforts in ballistic missile defense, first in
surface-acoustic-wave technology, in concurrence with the initiation of radar
measurements at the Kwajalein Missile Range, and then by exploitation of the
newly evolving technology of digital signal processing, which led to important
contributions for ballistic missile defense and Federal Aviation Administration
applications.







By 1972,
fabrication of the first reflective-array compressor
(RAC) was initiated; this device is illustrated in Fig-
ure 2. The first RAC device was a linear-FM filter
with a 50-MHz bandwidth (on a 200-MHz carrier)
matched to a 30-μsec-long waveform [16–18]. This
arrangement yielded a time-bandwidth product of
1500, more than an order of magnitude greater than
that achieved by interdigital-electrode SAW devices
[19]. The response was remarkably precise; the phase
deviation from an ideal linear-FM response was only
about 3° root mean square (rms). Pairs of matched
RACs were used in pulse-compression tests in which
the first device functioned as a pulse expander and the
second as a pulse compressor. The compressed
pulsewidths and sidelobe levels were near ideal.
Armed with these encouraging results, researchers
took the next step by developing RAC devices for spe-
cific Lincoln Laboratory radars.
RAC Pulse Compressors for the ALCOR Radar
The ARPA-Lincoln C-band Observables Radar, or
ALCOR [20], on Roi-Namur, Kwajalein Atoll, Mar-
shall Islands, had a wideband (512 MHz) 10-μsec-
long linear-FM transmitted-pulse waveform (see the
article entitled “Wideband Radar for Ballistic Missile
Defense and Range-Doppler Imaging of Satellites,”
by William W. Camp et al., in this issue). ALCOR
was a key tool in developing discrimination tech-
niques for ballistic missile defense. The wide band-
width yielded a range resolution that could resolve in-
dividual scatterers on reentering warhead-like objects.
This waveform was normally processed with the
STRETCH technique, which is a clever time-band-
width exchange process developed by the Airborne
Instrument Laboratory [21, 22]. The return signal is
mixed with a linear-FM chirp and the low-frequency
sideband is Fourier transformed to yield range infor-
mation. For a variety of reasons, the output band-
width and consequently the range window were lim-
ited. For example, the ALCOR STRETCH processor
yielded only a thirty-meter data window. Therefore,
examination of a number of reentry objects, or the
long ionized trails or wakes behind some objects, re-
quired a sequence of transmissions.
This sequential approach was inadequate in deal-
ing with the challenging discrimination tasks posed
by reentry complexes, which consist not only of the
reentry vehicle, but also a large number of other ob-
jects, including tank debris and decoys, spread out
over an extended range interval. What was needed
was a signal processor capable of performing pulse
compression over a large range interval on each pulse.
Lincoln Laboratory contracted with Hazeltine Labo-
ratory to develop a 512-MHz-bandwidth all-range
analog pulse compressor employing thirty-two paral-
lel narrowband dispersive bridged-T networks built



During 1972 and 1973, Lincoln Laboratory devel-
oped a 512-MHz-bandwidth (on a 1-GHz interme-
diate frequency [IF]) 10-μsec RAC linear-FM pulse
compressor [23].
#############


A trimming technique was developed to
achieve an adequately precise response. This tech-
nique required measuring the device and the subse-
quent deposition of a corrective metal pattern of vary-
ing width on the crystal surface of the RAC, as
illustrated in Figure 2. The resulting precision al-
lowed for a phase response that was precise to about
2.5° rms, or about one part per million over the 5120
cycles of the waveform. This response yielded near-in-
range sidelobes in the –35-dB range, whereas far-out
sidelobes rapidly fell to better than 40 to 50 dB down,
as shown in Figure 4. In Figure 5, which is a photo-
graph of a RAC developed for ALCOR, the two rain-
bow-colored stripes near the centerline of the crystal
show light that is diffracted from the etched grating.
The phase-compensating varying-width metal film
strip runs down the centerline of the crystal.
Pairs of approximately one-inch-long matched
RAC devices were installed in ALCOR in 1974 and
were used successfully in a series of reentry tests.
These devices proved to be such powerful wide-band-
width signal processors that advances in analog-to-
digital converter technology to capture the output
were required before the capability of the RAC de-
vices could be fully utilized.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4983
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 23:05. Заголовок: Nulling Over E..








Nulling Over Extremely Wide Bandwidths
When Using Stretch Processing
Richard M. Davis
Jose A. Torres
J. David R. Kramer
Ronald L. Fante
The MITRE Corporation
202 Burlington Road, Bedford, MA, 01730-1420
rmdavis@mitre.org, torres@mitre.org, dkramer@mitre.org, rfante@mitre.org
Adaptive Sensor Array Processing Workshop
March 10-11, 1999
15121501
4/6/99
2
Outline
0 The Problem
0 Traditional Solutions
0 A New Approach
0 Numerical Results
0 Summary
MITRE
4/6/99
3
The Problem
0 Given radar capable of radiating extremely wideband waveforms
(100 -1000 MHz)
0 Desire protect radar against sidelobe noise jamming
0 Each frequency within jammer’s spectrum is received with
different sidelobe gain.
0 Number of sidelobes jammer spreads through equals
time-bandwidth product (TB)
TB = D(sinθ - sinθο)B/C
where
T = Difference in arrival time of plane wave across array face
B = Jammer bandwidth
D = Array diameter
θο = Time-delay steered beam pointing direction


http://www.ll.mit.edu/asap/asap_99/abstract/Davis.pdf<\/u><\/a>






Demonstrated feasibility of sidelobe cancellation over extremely
wide bandwidths on systems which use stretch processing
0 Technique exploits mapping between time and frequency implicit
in stretch systems
0 Nulling can be performed in time or frequency domains
- Nulling in time domain after deramper, but before FFT, shown
to be analogous to traditional subbanding approach - but get
subbands free
- Nulling after FFT in frequency domain shown to be analogous
to traditional space-time processsing - but get time taps free
- One set of adaptive weights nulls all frequency bins provided
phase compensation is applied to all channels
- Signal cancellation can be controlled in time domain by
increasing number of samples used to estimate correlations,
and in frequency domain by using out-of-band correlation
MITRE


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4985
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 23:43. Заголовок: http://www.prod.sand..



http://www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/2002/022127.pdf<\/u><\/a>


Introduction
The Synthetic Aperture Radar (SAR) organization at Sandia National Laboratories is
currently undertaking several R&D efforts towards the development of a “next-
generation” miniaturized SAR or “Micro-SAR”. The goal of this collaborative effort is
to realize a high performance SAR which has a total weight of approximately 20 pounds.
In conjunction with the development of technology and techniques to miniaturize the
critical subsystems of a SAR (such as the antenna, transmitter, processors, RF electronics,
motion measurement, etc.), the digital radar technology development [1] has been
identified as key to the Micro-SAR effort. Digital receiver techniques such as direct or
bandpass sampling, bandwidth oversampling, and high-throughput DSP functions in
field-programmable gate arrays (FPGA) show great improvement in the system
performance, flexibility, and robustness, as well as significant reduction in physical size
and weight.
One key element in the realization of a “true” digital radar intermediate-frequency (IF)
receiver is the track-and-hold amplifier (THA). We propose that a THA plus a high-
speed (1 to 1.5 GS/s), high dynamic range (8 to 10-bit) analog-to-digital converter (ADC)
be employed to directly sample a 4 GHz IF signal present in our current-generation SAR
systems. A simplified block diagram of the RF subsystem, showing the 4 GHz IF output,
is shown in Figure 1.


A digital-waveform synthesizer (DWS) produces a linear-FM “chirped” waveform,
which is up-converted to 12.6 GHz. Upper and lower sideband implementations produce
wide-bandwidth (~3 GHz) transmit waveforms at Ku-band (16.6 GHz) and X-band (8.6
GHz) respectively. Because of the desired wide-bandwidth RF for fine range resolution,
bandwidth compression through stretch processing is utilized.


Stretch processing is a common technique whereby the wideband RF chirp is mixed or “de-ramped” with a
similar receive chirp to produce a relatively narrowband IF signal (200 to 250 MHz). It
is this 4 GHz IF signal, common to all of our current SAR systems, that we wish to direct
sample.

iz 3000 mgz - 250 mgz (pch 125-375 mgz ,dlja obrabotki ADC s skorostju bolee gigasamle)

prakticehskie resultati 1000 mgz -razreschenie 250 mm
2500 mgz -100 mm
5000 mgz - 50 mm

eto bez extrapoljazii polosi

The RF to IF bandwidth compression increases the signal dynamic range at IF relative to
RF. Even though the IF bandwidth of 200 to 250 MHz satisfies the Nyquist criteria for
current state-of-the-art ADCs in the 1 to 1.5 GS/s range, the additional dynamic range
places stringent requirements on the sampler, i.e., the THA and ADC combination.


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4986
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.11.10 23:49. Заголовок: n the classic sense,..


n the classic sense, analog receiver system design employs cascade linearity (second and
third-order intermodulation) and noise figure calculations based on individual component
characteristics. We desire to use the same analysis for a proposed SAR receiver, which
may employ a THA for direct 4 GHz IF sampling. Hence, we needed to first characterize
component-level parameters such as the 1 dB gain compression, the output third-order
intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), and
noise figure (NF) for the THA. In addition, time-domain jitter or phase noise degradation
of the THA must be quantified to understand its potential impact to the Doppler-domain
dynamic range performance of the SAR.
The purpose of this report is to document the above mentioned measurements performed
on the Rockwell Scientific RTH010 [2] THA, which has been identified as a prime
candidate, and possibly the only currently available candidate THA for our application.
All measurement parameters and configurations are catered specifically to the direct IF
sampling application mentioned. The measured data was then analyzed (some
quantitative, some qualitative) to determine the general impact of the non-idealities of the
THA to SAR performance.


Figure 2: Comparison of simplified block diagrams for the current SAR IF
configuration and the proposed digital IF implementation employing a fast THA.
The “Old Way” shows the current implementation. Currently, analog down-conversion,
analog IF filtering using surface-acoustic wave (SAW) filters, and analog quadrature
(I/Q) demodulation are employed. The “Digital Way” performs the necessary frequency
conversion by direct sampling the IF using the THA and the ADC. IF filtering and
quadrature demodulation, amongst other DSP operations, are all performed in FPGAs.
We are currently developing a digital IF receiver module upgrade to our current SAR.
This module utilizes bandwidth over-sampling and high-throughput DSP functions in
FPGAs. However, we have chosen not to employ a THA to direct sample the IF.
Instead, classic analog down-conversion is employed due to it’s lower implementation
risk. Future radars developed at Sandia National Labs may very well employ the benefits
of direct sampling using a THA, assuming that the device meets the system performance
requirements.

Analog Bandwidth
The THA must certainly support the 4 GHz direct IF sampling application. In addition,
we wish to measure the gain of the THA vs. frequency to assess the possibility of using
the RTH010 for future direct sampling applications up to X-band frequencies.


Noise Figure
The noise figure performance of the THA at 4 GHz helps determine the lower limit of the
SAR dynamic range.
SFDR and SNR
Both SFDR and SNR are measured and compared to the same parameters for the ADC
itself. Since the ADC is typically the dynamic range “bottleneck” in a SAR employing
stretch processing, we want to carefully assess the effective number of bits (ENOB) of
the THA and ADC as compared to the ADC alone.


4.1.4 Analog Bandwidth and Input/Output Impedance
We found that the output response was not very flat over the band of DC to 7GHz when
measured in the continuous-time domain. Therefore we were prompted to look at the
input and output impedance of the THA and the input impedance of the 180° hybrid
coupler. We found that this variation in the output response was due primarily to the
impedance variation of the hybrid coupler (or balun) and the THA:
• The input impedance of the THA varies from 51.85 (at 500 MHz) to 37.96 (at 4
GHz) to 74.50 (at 6 GHz) ohms.
• The output impedance of the THA varies from 34.76 (at 50 MHz) to 54.94 (at 450
MHz) ohms.
• The input impedance of the 180° hybrid coupler varies from 48.47 (at 50 MHz) to
100.10 (at 450 MHz) ohms.
• We also tried a balun on the THA output in place of the 180° hybrid coupler. The
results were similar, due to the input impedance of the balun varying from 23.23
(at 50 MHz) to 69.37 (at 400 MHz) to 53.24 (at 500 MHz) ohms.


The primary components utilized in the discrete-time measurements are the ADC
(Maxim MAX108) operating nominally at 1 GHz, the FPGA (Xilinx XC2V1000), and
the VME interface. For each ADC vector acquisition, data is stored in RAM located in
the FPGA, then transferred to a Motorola 2307 processor via the VME interface. From
there, the data is accumulated (if necessary), then transferred to a PC running Matlab via
an ethernet link.

10 bit e2v 2.5 gsps,8 bit ENOB,60 db SFDR awtoru ponrawilsja bolsche chem max108 i 109 (oba 8-bitnie )
w 2002 ego ne bilo ...


http://www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/2002/022127.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4987
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 00:21. Заголовок: x band radar s polo..


x band radar s polosoj 1 ghz ,razrescheniem 150 mm ,ispolzuetsja atmel 10 bit 2.2 gsps ( teper eto e2v)


High resolution range-Doppler radar demonstrator based on a commercially available FPGA card”, proceedings Radar 2008, Adelaide, Australia. pdf

An X-band high resolution range-Doppler radar demonstrator has been developed, based on a commercially available 6U-VXS form-factor digital signal processing card containing all necessary base-band circuitry. The custom design covers a radio frequency up-down converter, FPGA firmware and PC software. The practical signal bandwidth is close to 1GHz and the range resolution is close to 15cm. The functionality has been demonstrated in a free space radiation experiment.

By: Henning Nicolaisen#1, Tor Holmboe*2, Karina Vieira Hoel*3, Stein Kristoffersen*4
#University of Oslo, Department of Informatics P.O. Box 1080 Blindern, NO-0316 Oslo, Norway * Norwegian Defence Research Establishment


The radar resolution in range and Doppler can be varied
within wide limits, from the resolution typical of air target
range-Doppler radars to the high resolution representative of
ynthetic aperture radars (SAR) and inverse SAR (ISAR)
systems. However, no radar trajectory compensation, antenna
steering or target following function is implemented and the
MuPuRF radar mode does not represent an operational system
in this respect. The Nyquist digital signal bandwidth of
MuPuRF is 1 GHz, corresponding to 15 cm theoretical range
resolution.
he TRITON VXS-1, produced by Tekmicro [2], is a
single-slot 6U form factor card and is in accordance with the
VITA 41.0 VXS specification. The advertised key
applications for the TRITON VXS-1 include radar, electronic
warfare, software radio and telecommunications. Figure 2
shows the main components and signal paths. The core of the
TRITON VXS-1 is a Xilinx Virtex-II Pro FPGA circuit along
with a 10bit ADC and a 12bit DAC. Both converters can
operate at 2 GSamples/sec, giving a Nyquist digital signal
bandwidth of 1 GHz. The analog 3 dB-bandwidth extends
from 3 MHz to 3 GHz.

http://www.tekmicro.com/products/product.cfm?id=70&gid=5<\/u><\/a>

smotri link na dannoj stranize

Related Article Links:

High resolution range-Doppler radar demonstrator based on a commercially available FPGA card”, proceedings Radar 2008, Adelaide, Australia. pdf


ingle channel single stage RF up-down conversion is
employed. A more complex up-down converter may be
needed in order to enable multi-purpose operation, but the
present design is adequate for limited X-band lab-radar
operation. The sensitivity at the RF-input connector is such
that a -45 dBm input level corresponds to the full scale range
of the 10 bit ADC. Any LNA gain comes in addition. A high-
speed programmable, 60 dB range, attenuator can be utilized
to compensate for the 1/R4 range dependency and to perform
general sensitivity adjustments under software control.
The radar can operate using any kind of waveform within
the maximum 1 GHz bandwidth. The desired waveform is
selected and generated in the PC GUI and transferred to the
TRITON together with the rest of the radar parameters. The
pulse length is presently limited by the Tx-FIFO memory size
of 8 kSamples in the current configuration. With a full
bandwidth waveform (i.e. 2 G Samples/s) this is equivalent to
a 4 μs pulse.


he radar has been tested in a
free space radiation experiment with the combined match
filter and quadrature demodulator implemented in FPGA,
producing fully satisfying results for a 900 MHz bandwidth
waveform. The theoretical range resolution for this bandwidth
is 17 cm, which is in good accordance with the observed range
resolution.


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4988
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 00:43. Заголовок: Fast Facts: Founded..



Fast Facts:
Founded: November 1981
Employees: 35
Privately Held
ISO 9001 Certified

The QuiXilica V5 Architecture provides a simple flexible parallel interface that enables boards to be factory configured with different ADCs and DACs, thus enabling the boards to meet a robust variety of applications. High bandwidth support for ADCs and DACs operating beyond 5 GSPS is designed into the architecture.

Front-end/Back-end XMC Architecture: Unique two-part XMC design separates the protocol interface (front-end) from the standard back-end interface (PMC, XMC) and provides powerful advantages at many levels for customers who need to integrate, maintain, or upgrade multiple I/O modules. New protocol interfaces can quickly be added to existing back-ends as technology becomes available. Protocol interfaces can be upgraded with new back-end interfaces as technology demands.


Representative Customers
Alenia Marconi Systems
BAE
General Dynamics
L-3 Communications
Lockheed Martin
MIT
NASA
Northrop Grumman
Raytheon
Recon Optical Inc.
Rockwell Collins

http://www.tekmicro.com/about/fastfacts.cfm<\/u><\/a>

http://www.tekmicro.com/products/index.cfm<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4990
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 02:27. Заголовок: The AN/FPS-16 is a h..


The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar (SOTR), used extensively by the NASA manned space program and the U.S. Air Force. The accuracy of Radar Set AN/FPS-16 is such that the position data obtained from point-source targets has azimuth and elevation angular errors of less than 0.1 milliradian (approximately 0.006 degree) and range errors of less than 5 yards (5 m) with a signal-to-noise ratio of 20 decibels or greater.

s antennoj 3.9 metra , IF /Pch -30 mgz i polosoj 8 mgz
######################################

The sum, azimuth, and elevation signals are converted to 30 MHz IF signals and amplified. The phases of the elevation and azimuth signals are then compared with the sum signal to determine error polarity. These errors are detected, commutated, amplified, and used to control the antenna-positioning servos. A part of the reference signal is detected and used as a video range tracking signal and as the video scope display. A highly precise antenna mount is required to maintain the accuracy of the angle system.

t..e ne wse rezimi raboti RLS trebujut polosi 500 mgz-8000 mgz kak SAR/ISAR ,kotorie mogut razlichat yabch ot loznoj celi po kinematike dwizenija
#################################################################################################

IF/PCH 30 mgz ,polosa 8 mgz -eto 16 bit AZP ... s dither , NLEQ processor eto okolo 110 db dinamicheskij diapazon

s kombinaziej drugix metodow wozmozno bolsche

podxodjat rjad AZP AD9467 250 msps/16 bit ,TI ADS5485 16 bit/200 msps ,LTC2209 160 msps/16 bit

wse oni normirowanni dlja Fin do 300 mgz

modifikazija obrabotk isignala AN/FPS-16

http://www.integrated-om-solutions.com/brochure/ESD%20PDF/rott.pdf<\/u><\/a>


The 3-channel Radar Signal Processor (RSP) provides state-of-the-art, digital filtering techniques
for signal processing. The RSP subsystem combines the functions previously provided by the
Digital Moving Target Indicator Receiver and Intelligent Range Tracker in a single VME solution. It
accepts 3-channel monopulse IF inputs, digitizes the 30 mHz IF, and produces filtered angle error
and target range information. Additionally, it incorporates Doppler processing to reduce the effects
of stationary clutter. This subsystem works with magnetron-based transmitters in a coherent-on-
receive mode and with CFA-based transmitter in a fully coherent mode.


BAE SYSTEMS offers cost effective modifications and upgrades to improve
performance and extend the operational life of existing radar systems.
Comprehensive upgrade programs have been developed for specific types of
radars including the AN/MPS-25, AN/MPS-36, AN/FPQ-6, AN/TPQ-39, NIKE
systems and the AN/FPS-16. Upgrade features include the following:


NASA Acq aid and telelmetry systems were co-located with the Australian radar.

To obtain reliability in providing accurate trajectory data, the Mercury spacecraft was equipped with C-band and S-band cooperative beacons. The ground radar systems had to be compatible with the spacecraft radar beacons. The FPS-16 radar in use at most national missile ranges was selected to meet the C-band requirement. Although it originally had a range capability of only 250 nautical miles (460 km), most of the FPS-16 radar units selected for the project had been modified for operation up to 500 nautical miles (900 km), a NASA requirement, and modification kits were obtained for the remaining systems. In addition to the basic radar system, it was also necessary to provide the required data-handling equipment to allow data to be transmitted from all sites to the computers.

The FPS-16 system originally planned for the Project Mercury tracking network did not have adequate displays and controls for reliably acquiring the spacecraft in the acquisition time available. Consequently, a contract was negotiated with a manufacturer to provide the instrumentation radar acquisition (IRACQ)[Increased RAnge Acquisition] modifications. For the near earth spacecraft involved a major limitation of the FPS-16 was its mechanical range gear box, a wonderful piece of engineering. However, for a target at a range typically, say, 700 nautical miles (1,300 km; 810 mi) at acquisition of signal [AOS], the radar was tracking second time around, that is, the pulse received in this interpulse period was that due to the previously transmitted pulse, and it would be indicating a range of 700 nmi (1,300 km; 810 mi). As the range closed the return pulse became closer and closer to the time at which the next transmitter pulse should occur. If they were allowed to coincide, remembering that the transmit-receive switch disconnected the receive (Rx) and connected the transmit (Tx) to the antenna at that instant, track would be lost. So, IRACQ provided an electronic ranging system, the function of which was to provide the necessary gating pulses to the Az and El receiver channels so that the system would maintain angle track. The system utilized a voltage controlled crystal oscillator [VCXO] as the clock generator for the range counters. An early/late gate system derived an error voltage which either increased [for a closing target] or decreased [for an opening target] the clock frequency, thus causing the gates to be generated so as to track the target. It also, when the target reached an indicated range of less than 16,000 yd (15 km), took over the generation of transmitter trigger pulses and delayed these by 16,000 yd (15 km), thus enabling the received pulses to pass through the Big Bang, as it was called, of normally timed Tx pulses. The radar operator, would, while IRACQ maintained angle track be slewing the range system from minimum range to maximum so as to regain track of the target at its true range of <500 nmi (900 km). As the target passed through point of closest approach (PCA) and increased in range the process was repeated at maximum range indication. The most difficult passses were those in which the orbit was such that the target came to PCA at a range of, say 470 nmi. That pass required the radar operator to work very hard as the radar closed, and then opened in range through the Big Bang in short order. The IRACQ Console contained a C-scope associated with which was a small joy stick which gave C-scope operator control of the antenna angle servo systems so that he could adjust the pointing angle to acquire the signal. IRACQ included a scan generator which drove the antenna in one of several pre-determined search patterns around the nominal pointing position, it being desirable that IRACQ acquire the target as early as possible. An essential feature of this modification is that it allows examination of all incoming video signals and allows establishment of angle-only track. Once the spacecraft has been acquired, in angle range. Other features of the IRACQ system included additional angle scan modes and radar phasing controls to permit multiple radar interrogation of the spacecraft beacon. The addition of a beacon local oscillator wave meter permitted the determination of spacecraft-transmitter frequency drift.

Early in the installation program, it was realized that the range of the Bermuda FPS-16 should be increased beyond 500 miles (800 km). With the 500-mile (800 km)-range limitation, it was possible to track the spacecraft for only 30 seconds prior to launch-vehicle sustainer engine cut-off (SECO) during the critical insertion phase. By extending the range capability to 1,000 miles (2,000 km), the spacecraft could be acquired earlier, and additional data could be provided to the Bermuda computer and flight dynamics consort This modification also increased the probability of having valid data available to make a go/no-go decision after SECO.

http://en.wikipedia.org/wiki/AN/FPS-16<\/u><\/a>

C-Band Radar Transponder

The C-Band Radar Transponder (Model SST-135C) is intended to increase the range and accuracy of the radar ground stations equipped with AN/FPS-16, and AN/FPQ-6 Radar Systems. C-band radar stations at the Kennedy Space Center, along the Atlantic Missile Range, and at many other locations around the world, provide global tracking capabilities. Beginning with Vehicles 204 and 501, two C-band radar transponders will be carried in the instrumentation unit (IU) to provide radar tracking capabilities independent of the vehicle attitude. This arrangement is more reliable than the antenna switching circuits necessary if only one transponder would be used.
[edit] Transponder operation

The transponder receives coded or single pulse interrogation from ground stations and transmits a single-pulse reply in the same frequency band. A common antenna is used for receiving and transmitting. The transponder consists of five functional systems: superheterodyne receiver, decoder, modulator, transmitter, and power supply. The duplexer (a 4-port ferromagnetic circulator) provides isolation between receiver and transmitter. Interrogating pulses are directed from the antenna to the receiver, and reply pulses are directed from the transmitter to the antenna. The preselector, consisting of three coaxial cavities, attenuates all RF signals outside the receiving band.

The received signal is heterodyned to a 50 MHz intermediate frequency
################################################

ywelichena polosa do 16 mgz ?

toze chto i dlja 30mgz s polosoj 8 mgz
---------------------------------------------------------

Priwedennie 16 bit AZP prekrasno podxodjat
#################################



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4991
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 02:44. Заголовок: http://en.wikipedia...


http://en.wikipedia.org/wiki/AN/FPQ-6<\/u><\/a>

AN/FPQ-6 vairan FPS-16 s antennoj 9 metrow

The AN/FPQ-6 is a fixed, land-based C-band radar system used for long-range, small-target tracking. The AN/FPQ-6 Instrumentation Radar located at the NASA Kennedy Space Center was the principal C-Band tracking radar system for Apollo program.

RCA’s Missile and Surface Radar Division developed the FPQ-6 skin tracking C-Band radar as a successor to the AN/FPS-16 radar set. The AN/FPQ-6 can provide continuous spherical coordinate information at ranges of 32,000 nautical miles (59,000 kilometers) with an accuracy of plus and minus 6 ft (1.8 m). The AN/FPS-16 has range limited to 500 nmi (930 kilometers) with an accuracy of 15 feet (5 m), although it could be modified to a maximum range of 5,000 nmi (9,300 kilometers).

The AN/FPQ-6 radar employed a 2.8 megawatt peak power (4.8 kilowatt average), broad banded (5400–5900 MHz) transmitter with a frequency stability of 1×108.

The 8.8 meter diameter parabolic antenna, using a Cassegrain antenna feed, had a 0.4° beamwidth and a gain of 51 dB. Its monopulse, 5 horn feed system permitted the reference and error antenna patterns to have their gains independently established as well as the slope of the error patterns optimized while supplying target return signals to the receiving system with a minimum of insertion loss.

The three channel signal outputs of the antenna feed system were supplied directly to the receiving system without undergoing any additional loss-inducing signal manipulation with bandwidths optimized for the specified pulse widths of 0.5, 0.75, 1.0 and 2.4 microseconds and the receiver noise figure of 7.5 dB was improved to 3.5 dB through the addition of closed-cycle parametric RF amplifiers.


This system ensured a dynamic range in excess of 120 dB.
#######################################

Dlja sluschaew s wisokoj ionizaciej atmosferi ( poriw yabch serjno) yawno nuzno bolsche ....

woprosi

1. Skolko boslche ? 150 db ? 180 db ?
2. Kak realizowat ochen wisokij dinamicheskij diapazon ?

a.Analogowo
b. AZP 16 bit s kombinaziej metodow ?
c. esli realizuemo ,to kakix metodow ?




Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4992
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 02:47. Заголовок: Some notes on the AN..


Some notes on the AN-FPQ 6 Radar

The AN-FPQ 6 radar was built by RCA and was, effectively, a development of the AN-FPS 16. The Q6, as it was known by those who worked on it, was an amplitude comparison monopulse C-band radar, with a 2.8 MW peak klystron transmitter tunable from 5.4 to 5.8 GHZ, which had a 9 meter parabolic antenna, having 52 dB gain, a 0.6 degree beam width, utilizing a Cassegrainian feed with a five horn monopulse comparator. This radar had an unambiguous maximum range of 215 or 32,768 nautical miles (60,686 km), and employed uncooled parametric amplifiers with a system noise temperature of 440 K, [a noise figure of 4 dB].

A major features of the radar was its maximum unambiguous range of 32,768 nautical miles (60,686 km) despite a pulse repetition frequency [PRF]of some hundreds of pulses per second.


RCA’s Missile and Surface Radar Division developed the FPQ-6 skin tracking C-Band radar as a successor to the AN/FPS-16 radar set. The AN/FPQ-6 can provide continuous spherical coordinate information at ranges of 32,000 nautical miles (59,000 kilometers) with an accuracy of plus and minus 6 ft (1.8 m). The AN/FPS-16 has range limited to 500 nmi (930 kilometers) with an accuracy of 15 feet (5 m), although it could be modified to a maximum range of 5,000 nmi (9,300 kilometers).

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4993
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:00. Заголовок: mit/receive circuit...


mit/receive circuit. The transmit side includes phase control and field-effect transistor (FET) power amplification at
17 GHz, and a frequency doubler. On the receive side, a dual unit incorporates a transmit/receive switch and a mixer
that produces the intermediate frequency (IF) at 1 to 2 GHz. This dual


driving a doubler to produce output power at 34
GHz [72]


t.e. Radar 34-35 ghz ,poosa 1000 mgz , IF/Pch 1-2 ghz s polosoj 1000 mgz ...seredina 80 godow


Gallium-ars-
enide MMIC transmit/receive-module technology is
used in the X-band (8.0 to 12.0 GHz) theater-mis-
sile-defense phased-array radar system [54] built by
Raytheon Corporation.

THAAD IF ?


The measured average sidelobe level
is –50 dB, close to the theoretical value. Space-based
radars or airborne radars can use multiple displaced
phase centers to cancel clutter, as described in the ar-
ticle by Muehe and Labitt in this issue. A


The Development of Phased-Array Radar Technology Alan J. Fenn, Donald H. Temme, William P. Delaney, and William E. Courtney Lincoln Laboratory has been involved in the development of phased-array radar technology since the late 1950s. Radar research activities have included theoretical analysis, application studies, hardware design, device fabrication, and system testing. Early phased-array research was centered on improving the national capability in phased-array radars. The Laboratory has developed several test-bed phased arrays, which have been used to demonstrate and evaluate components, beamforming techniques, calibration, and testing methodologies. The Laboratory has also contributed significantly in the area of phased-array antenna radiating elements, phase-shifter technology, solid-state transmit-and- receive modules, and monolithic microwave integrated circuit (MMIC) technology. A number of developmental phased-array radar systems have resulted from this research, as discussed in other articles in this issue. A wide variety of processing techniques and system components have also been developed. This article provides an overview of more than forty years of this phased-array radar research activity.


http://74.6.238.254/search/srpcache?ei=UTF-8&p=lincoln+laboratory+intermediate+freuqency&fr=alltheweb&u=http://cc.bingj.com/cache.aspx<\/u><\/a>?q=lincoln+laboratory+intermediate+freuqency&d=5036463472512378&mkt=en-US&setlang=en-US&w=1669e1b5,ad59e78a&icp=1&.intl=us&sig=.9Wr9D8VXb3rqwiVcHxEZA--

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4994
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:15. Заголовок: ALCOR operates at C..



ALCOR operates at C-band (5672 MHz) with a
signal bandwidth of 512 MHz that yields a range
resolution of 0.5 m. (The ALCOR signal was heavily
weighted to produce low range sidelobes with the
concurrent broadening of the resolution.) Its wide-
bandwidth waveform is a 10-μsec pulse linearly swept
over the 512-MHz frequency range. High signal-to-
noise ratio of 23 dB per pulse on a one-square-meter
target at a range of a thousand kilometers is achieved
with a high-power transmitter (3 MW peak and 6
kW average) and a forty-foot-diameter antenna.
Cross-range resolution comparable to range resolu-
tion is achievable with Doppler processing for targets
rotating at least 3° in the observation time. The pulse-
repetition frequency of this waveform is two hundred
pulses per second







Processing 500-MHz-bandwidth signals in some
conventional pulse-compression scheme was not fea-
sible with the technology available at the time of
ALCOR’s inception. Consequently, it was necessary
to greatly reduce signal bandwidth while preserving
range resolution. This is accomplished in a time-
bandwidth exchange technique (originated at the Air-
borne Instrument Laboratory, in Mineola, New York)
called stretch processing [4], which retains range reso-
lution but restricts range coverage to a narrow thirty-
meter window. In order to acquire and track targets
and designate desired targets to the thirty-meter
wideband window, ALCOR has a narrowband wave-
form with a duration of 10.2 μsec and bandwidth of
6 MHz. This narrowband waveform has a much
larger 2.5-km range data window.


Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites 270 LINCOLN LABORATORY JOURNALVOLUME 12

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4995
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:19. Заголовок: The Haystack system ..


The Haystack system has a number of features that
rendered this option extremely attractive. It has a
large diameter (120 ft) antenna needed to achieve
deep-space ranges. The antenna was designed with
Cassegrainian optics and could accommodate plug-in
radio-frequency (RF) boxes at the vertex of the pa-
raboloidal dish. These boxes supported various com-
munications, radio astronomy, and radar functions.
The interchangeable boxes are 8 × 8 × 12 ft, which is
large enough for the high-power (400 kW peak and
200 kW average) new transmitter and associated mi-
crowave plumbing, feedhorns, and low-noise receiv-
ers needed for the long-range imaging radar.1 The
Haystack antenna surface tolerance allows efficient
operation up to 50 GHz, thus readily supporting op-
erating at X-band (10 GHz) with a bandwidth of
1024 MHz, and a resulting range resolution of 0.25
m. A system for interchanging ground-based elec-
tronics and power sources supporting the various RF
boxes was already in place. Using an established facil-
ity with existing antenna and prime power sources
greatly reduced the cost of the new system, known as
the Long Range Imaging Radar, or LRIR [6].
The LRIR, which was completed in 1978, is ca-
pable of detecting, tracking, and imaging satellites
out to synchronous-orbit altitudes, approximately
40,000 km. The range resolution of 0.25 m is
matched by a cross-range resolution of 0.25 m for tar-
gets that rotate at least 3.44° during the Doppler-pro-
cessing interval. The wideband waveform is 256 μsec
long and the bandwidth of 1024 MHz is generated by
linear frequency modulation. The pulse-repetition
frequency is 1200 pulses per second. The LRIR em-
ploys a time-bandwidth exchange process similar to

###################################
that of ALCOR to reduce signal bandwidth from
##############################
1024 MHz to a maximum of 4 MHz, corresponding
####################################
to a range window of 120 m, while preserving the
#################################
range resolution of 0.25 m
####################

kopija iz wische ....

This is accomplished in a time-
bandwidth exchange technique (originated at the Air-
borne Instrument Laboratory, in Mineola, New York)
called stretch processing [4],
###################
which retains range reso-
lution but restricts range coverage to a narrow thirty-
meter window.



To place a target in the
wideband window, we first acquire the target with a
continuous-wave acquisition pulse that is variable in
length from 256 μsec (for short-range targets) to 50
msec (for long-range targets). An acquired target is
then placed in active tracking by using 10-MHz-
bandwidth chirped pulses, again of variable length,
from 256 μsec to 50 msec. The wideband window is
then designated to the target. Antenna beamwidth is
0.05°. Figure 3(a) shows an artist’s rendition of the
120-foot Haystack antenna in its 150-foot radome;
Figure 3(b) shows a photograph of the LRIR feed
horn and transmitter/receiver RF box in the Haystack
radome


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4996
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:24. Заголовок: mmw radar A second..


mmw radar

A second 35-GHz tube was also added, which
doubled the average transmitted power. These modi-
fications increased the signal pulse detection range on
a one-square-meter target to over two thousand kilo-
meters. System bandwidth was also increased to 2
GHz, resulting in a range resolution of about 0.10 m.


More recently, Lincoln Laboratory has developed
and exploited several techniques for improving the
278
LINCOLN LABORATORY JOURNAL
VOLUME 12, NUMBER 2, 2000
resolution of wideband coherent radar data. The first
technique uses modern spectral-analysis methods for
improving resolution relative to the restrictions of
conventional Fourier processing. These spectral
methods extrapolate signals in a radar-frequency di-
mension by a process called bandwidth extrapolation.
Each wideband pulse return includes the target fre-
quency response over the chirped bandwidth. Mod-
ern spectral-estimation techniques are then applied to
extend this frequency response synthetically outside
this band to a factor ranging from two to three times
the bandwidth. This expanded pulse return is then re-
compressed to provide finer range resolution (for
practical signal-to-noise ratios, an improvement of a
factor of two to three in resolution is generally real-
ized), and when applied to radar imaging, it provides
much improved sharpness in the radar image [9].
The second technique uses signal processing mod-
els that correspond to rotating-point motion. The
models allow extended coherent processing over wide
target-rotation angles, resulting in improved Doppler
(cross-range) resolution [10]. For sufficiently large
resolution angles and for constant-amplitude scatter-
ing centers, extended coherent processing also im-
proves the range resolution. Extended coherent pro-
cessing essentially aligns and stores radar pulses ob-
tained over longer time spans as compared to conven-
tional imaging. When combined with bandwidth ex-
trapolation, extended coherent processing can achieve
enhanced resolution in both range and Doppler
(cross-range) spaces. For targets where the radar view-
ing angle is at a constant aspect angle to the target’s
angular-momentum vector, extended coherent pro-
cessing provides high-quality three-dimensional radar
images.
More recently, the Laboratory has explored the
possibility of achieving ultrawideband resolution by
using data only over sparse subbands of the full ultra-
wide bandwidth. We can view this technique as a gen-
eralization of bandwidth extrapolation to multiple
bands [10]. Ultrawideband’s potential as a discrimi-
nation tool is much more robust, as scatterer-feature
identification on a specific target is inherently more
accurate when observed over a much wider band-
width.

Wideband Radar for Ballistic
Missile Defense and Range-
Doppler Imaging of Satellites
William W. Camp, Joseph T. Mayhan, and Robert M. O’Donnell
s Lincoln Laboratory led the nation in the development of high-power
wideband radar with a unique capability for resolving target scattering centers
and producing three-dimensional images of individual targets. The Laboratory
fielded the first wideband radar, called ALCOR, in 1970 at Kwajalein Atoll.


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 4997
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:34. Заголовок: linki p oadressu n..


linki p oadressu nize

http://academic.research.microsoft.com/Paper/4586571.aspx<\/u><\/a>

Wideband Radar for Ballistic Missile Defense and Range- Doppler Imaging of Satellites (Citations: 3)
William W. Camp, Joseph T. Mayhan, Robert M. O'Donnell
Lincoln Laboratory led the nation in the development of high-power wideband radar with a unique capability for resolving target scattering centers and producing three-dimensional images of individual targets. The Laboratory fielded the first wideband radar, called ALCOR, in 1970 at Kwajalein Atoll. Since 1970 the Laboratory has developed and fielded several other wideband radars for use in ballistic-missile-defense research and space-object identification. In parallel with these radar systems, the Laboratory has developed high-capacity, high-speed signal and data processing techniques and algorithms that permit generation of target images and derivation of other target features in near real time. It has also pioneered new ways to realize improved resolution and scatterer-feature identification in wideband radars by the development and application of advanced signal processing techniques. Through the analysis of dynamic target images and other wideband observables, we can acquire knowledge of target form, structure, materials, motion, mass distribution, identifying features, and function. Such capability is of great benefit in ballistic missile decoy discrimination and in space-object identification.
Published in 2000.
View or Download

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5000
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:51. Заголовок: 35 ghz /2000 mgz mm..


35 ghz /2000 mgz mmw radar s 13.6 metra D antennoj 0.042 gradschirinoj lucha na 35 ghz(0.014 grad na 94 ghz)
i razrescheniem 100 mm pri polose 2000 mgz


The 100-kW millimeter-wave radar at the Kwajalein Atoll (Citations: 3)
M.d. Abouzahra, R.k. Avent
Published in 1994.
View or Download http://academic.research.microsoft.com/Paper/1635526.aspx<\/u><\/a>


mplified, before being launched out of the antenna. At a specified
time (which is determined in the real-time program (RTP) by
extrapolating the range-tracking filter), the waveform generator is
again triggered, producing the same chirped waveform. This signal
is input to the correlation mixer, and is mixed with the target return,
previously translated down to a center frequency of 6.44 GHz. ( 35 ghz -RF)
-----------------------------------------------------------------------------------------------
Fig-
ure Sb shows a theoretical target return for two point scatterers,
located a distance Ar apart. This signal is shown at a point imme-
diately after the frequency translator. Note that this illustration
assumes that the range trigger was initiated exactly coincident in
time with the reception of the in-range scatterer. In other words,
both the return and the correlation ramp have a center frequency of
6.44 GHz.
------------------
Note also that it is assumed that the Doppler frequencies
associated with the target have been removed. Under these
assumptions, the output of the correlation mixer is a sum of two
constant tones, the frequency difference of which is a function of
the range difference between the two scatterers. In other words, we
have effectively performed a time-delay-to-frequency conversion.
This output is shown in Figure Sc, which gives the frequency differ-
ence between the two point scatterers as pAr . Notice that because
Ar can range over the full 7.5-km pulse, the frequency difference
between two scatterers can thus range over the full chirp band-
width. Because the pulse-compression network is based on a fast
Fourier transform (FFT), and thus requires a sampled waveform

he signal bandwidth has to be reduced to a level commensurate
with today’s A/D converter technology. This band-limiting opera-
tion is accomplished with a 5-MHz bandpass filter, after the signal
is mixed to a center frequency of 60 MHz.
---------------------------------------------------------------
The resulting 5-MHz
bandpass filter is then converted to in-phase and quadrature-phase
components, and Fourier transformed to yield the range display
shown in Figure 8d.

....



Because MMW has such an extremely high bandwidth, nei-
ther all-range processors, conventional dispersive-delay lines, nor
surface-acoustic-wave techniques can be employed to compress the
pulse. For this reason, the concept of band limiting the range win-
dow to 5 MHz, sampling the resulting signal, and using digital-
spectral analysis to detect the target, was implemented. The result is
that the range extent, or the amount of target space seen, is
This depend-
bounded, and is a function of the chirp bandwidth, W.
ency can be derived by noting that the maximum fiequency devia-
tion into the FFT is 5 MHz, because there is a 5-MHz band-limiting
filter prior to the ,443 converter. This 5-MHz filter, denoted here as
O b p , correlates to a range difference o


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5001
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 03:55. Заголовок: As shown in Figure 1..


As shown in Figure 17,
the signal is then downconverted to 60 MHz, input to an automatic-
gain control (AGC) network, and band limited to 5 MHz. The
resulting 60-MHz signal is once again mixed, to yield a 5-MHz sig-
nal at an IF of 5 MHz. This final signal can be succinctly described
as
(4)
where fi/ is the 5-m~ fA is the frequency-encoded range
IF,
term, and -2.5 MHz < f,, c 2.5 MHz. The resulting signal is sam-
pled by a IO-bit 20-MHz A/D converter over the 50-its pulse,
resulting in 1000 samples which are input to the digital portion of
the pulse-compression system.


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5002
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 16:51. Заголовок: http://tscm.com/rcvr..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5003
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 21:01. Заголовок: conversija microvolt..


conversija microvolt w dbm

For the common situation where R=50, this simplifies to

(9) dBm = 20 LOG Eµ - 107

Emju w mirovoltax

esli priemnik imeet chustwitelnost 0.25 microvolt pri signal / k schumam i iskazenijam 12 db
###############################################################


to 0.25 microvolta = -119 dbm ili 149 dbwatt i pri etom naprjazenii signala na wixode
poleznij signal na 12 db(po moschnsoti 16 raz ,po napr 4 raza ) wische chem schum

eto dlja polosi 1000 gerz



A SINAD of 12-dB should provide a comfortable margin for copying voice communications. A skilled listener can probably copy voice signals which have a signal to noise ratio of much less than 12-dB. Very skilled listeners can copy voice signals which are at or below the noise level.

http://continuouswave.com/whaler/reference/dBm.html<\/u><\/a>

http://continuouswave.com/whaler/reference/VHF.html<\/u><\/a>


http://continuouswave.com/ubb/Forum6/HTML/001847.html<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5004
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 21:12. Заголовок: klassischeskij priem..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5005
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.11.10 21:38. Заголовок: For a 1 Hz bandwidth..


For a 1 Hz bandwidth and at 290 K:

Pn = 1.38 * 10-23 * 290 * 1

Pn = 4 * 10-21 Watts

Pn = -174 dBm

For a 1 Hz bandwidth and at 1 K:

Pn = 1.38 * 10-23 Watts

Pn = -198 dBm


za schet kriogenowogo oxlazdenija mozno wiigrat do 20 db
#######################################


http://www.qsl.net/n9zia/receiver.html<\/u><\/a>


The wider the bandwidth, the greater the noise power and the higher the noise floor
########################################################


Consider a receiver that has a 1 MHz bandwidth and a 20 dB noise figure. If a S/N of 10 dB is desired, the sensitivity (S) is:

S = -174 + 20 + 10log101,000,000 + 10

S = -84 dBm

It can be seen from this that if a lower S/N is required, better receiver sensitivity is necessary. If a 0 dB S/N is used, the sensitivity would become -94 dBm. The -94 dBm figure is the level at which the signal power equals noise power in the receiver's bandwidth. If the bandwidth were reduced to 100 kHz while maintaining the same input signal level, the output S/N would be increased to 10 dB due to noise power reduction.

-------

dlja RLS ispolzuemoj w Appolo proekt IF polosa bila 8 mgz
##########################################
a S/N receiver bilo polutsche na 8db -10

t.e. w formule nize

a. yxudschit na 8 db za schet raschirenija polosi s 1 mgz do 8 mgz
b. ylutschit na 8 db za chet lutschej schumowoj xarakteristiki


Consider a receiver that has a 1 MHz bandwidth and a 20 dB noise figure. If a S/N of 10 dB is desired, the sensitivity (S) is:

S = -174 + 20 + 10log101,000,000 + 10

S = -84 dBm
##############

A dinamicheskij diapazon bolee 120 db ...

powtor dinamicheskij diapazon w stat'e Watkins -Johnson

http://www.rfcafe.com/references/articles/wj-tech-notes/Rec_dyn_range2.pdf<\/u><\/a>


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5031
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.11.10 23:31. Заголовок: 24 bit 4msps TI h..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5032
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 00:40. Заголовок: A 4 GSample/s 8b ADC..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5033
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 00:45. Заголовок: http://www.poulton.n..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5046
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 19:31. Заголовок: press release Nov..



press release

Nov. 4, 2010, 12:30 p.m. EDT
Innovative 2GSPS Digitizer Reference Design Reduces Time to Market for Communications, Radar and Test Applications

MILPITAS, CA, Nov 04, 2010 (MARKETWIRE via COMTEX) -- Intersil Corporation /quotes/comstock/15*!isil/quotes/nls/isil (ISIL 13.64, +0.38, +2.87%) today introduced the industry's most power-efficient 12-bit, 2 Gigasample/second (GSPS) digitizer reference design, developed to reduce design time for advanced communications, radar and test systems.

Based on Intersil's ISLA112P50 500 Megasample/second (MSPS) converter, the new 2GSPS reference design meets industry requirements for increased sampling speeds, and eliminates artifacts typically caused by interleaved ADCs. Intersil collaborated with SP Devices to develop the new reference design.

The Intersil reference design demonstrates detailed best practices in a known-good system, providing real-time, FPGA-based digital interleave correction of four ISLA112P50 devices. It features significant signal-to-noise and spurious-free dynamic range performance benefits compared with competing 2GSPS ADCs. The signal-to-noise ratio (SNR) is 65.5dB at a 190MHz input frequency, which represents an improvement of 6dB over competing solutions. Since SNR does not degrade significantly with higher input frequencies, this performance advantage is maintained over the entire bandwidth of the digitizer. Spurious free dynamic range (SFDR) is 81.7dBc at a 190MHz input frequency, an improvement of 13dBc. The reference design provides superior SFDR for input frequencies up to 500MHz.

Four 12-Bit 500MSPS ISLA112P50 devices are interleaved to provide 2GSPS. Full power bandwidth is 750MHz, and ADC- and interleave-related power consumption is just 4.1W. For details on the SP Devices evaluation cards, please visit http://www.spdevices.com/index.php/products2/adx4-evm-2000-12.<\/u><\/a>

For information on the Intersil reference design, please visit
http://www.intersil.com/converters/ADC_ref_design.asp.<\/u><\/a>

About the ISLA112P50 The ISLA112P50 is the latest in Intersil's expanding family of high performance, low-power ADCs. Developed for broadband communications, radar, light detection and ranging (LIDAR) and data acquisition systems, the new converter is built using Intersil's proprietary FemtoCharge(R) technology on a standard CMOS process.

The converter's dynamic performance and specifications are optimal for targeted applications. Analog input bandwidth is 1.15GHz. Signal-to-noise ratio is 65.8dBFS and SFDR is 80dBc for an input frequency of 190MHz. The device incorporates nap/sleep modes, and digital output data is available in either LVDS or CMOS formats, increasing design flexibility.

About Intersil Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed signal and power management semiconductors. The Company's products address some of the fastest growing markets within the communications, computing, consumer and industrial industries. For more information about Intersil or to find out how to become a member of our winning team, visit the Company's web site and career page at www.intersil.com.

Intersil, the Intersil logo and FemtoCharge are trademarks or registered trademarks of Intersil Corporation. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

SOURCE: Intersil

Copyright 2010 Marketwire, Inc., All rights reserved.


http://www.intersil.com/converters/ADC_ref_design.asp<\/u><\/a>


Intersil 2GSPS Reference Design

By interleaving Intersil's low power, high sample rate ADCs, it is possible to achieve a combination of ultra-high sample rate and very high dynamic range that is not available in today’s stand-alone ADCs.

This reference design demonstrates the performance attainable by combining Intersil's ADC technology and SP Devices interleaving algorithms. In this design, 4 ISLA112P50 12-bit, 500 MSPS analog-to-digital converters are interleaved to sample at a rate of 2.0 GSPS. At this sampling rate, the reference design provides over 6dB more SNR and 13dB better SFDR than the best alternative stand-alone ADC.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5047
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 20:25. Заголовок: Raznie priemi dlja ..


Raznie priemi dlja ywleichenija SNR i SFDR ne wsegda prinosjat resultat

1. Averaging
2. Oversampling
3. Dithering
4. Interleaving


When Oversampling and
Averaging Will Work
The effectiveness of oversampling and averaging
depends on the characteristics of the dominant
noise sources. The key requirement is that
the noise can be modeled as white noise.
Please see Appendix B for a discussion on the
characteristics of noise that will benefit from
oversampling techniques. Key points to consider
are [2] [3]:
• The noise must approximate white noise
with uniform power spectral density over
the frequency band of interest.
• The noise amplitude must be sufficient to
cause the input signal to change randomly
from sample to sample by amounts comparable
to at least the distance between two
adjacent codes (i.e.,1 LSB - please see
Equation 5 in Appendix A).
• The input signal can be represented as a
random variable that has equal probability
of existing at any value between two adjacent
ADC codes.
Note: Oversampling and averaging techniques
will not compensate for ADC integral non-linearity
(INL).
Noise that is correlated or cannot be modeled
as white noise (such as noise in systems with
feedback) will not benefit from oversampling
techniques.
#############
Additionally,if the quantization
noise power is greater than that of natural
white noise (e.g.,ther mal noise),then oversampling
and averaging will not be effective.
########################
This is often the case in lower resolution
ADC’s. The majority of applications using 12-
bit ADC’s can benefit from oversampling and
averaging.


each additional required bit of resolution
can be achieved via oversampling by a
factor of four,and each additional bit will add
approximately 6 db of SNR (Equation 3) at the
cost of reduced throughput and increased CPU
bandwidth.

http://www.premier-electric.com/files/Cygnal/AppNotes/AN018.pdf<\/u><\/a>


If we are
using the 12-bit on-chip ADC and wish to have
the accuracy of a 16-bit ADC,we need an
additional 4 bits of resolution. Four factors of
four (using Equation 11) is 256. Thus,we need
to oversample by a factor of 256 times the
Nyquist rate. If the desired signal is band-limited
to 60 Hz (fm=60 Hz),the n we must oversample
oversample
at 120 Hz * 256 = 30.7 kHz. We
improve the effective resolution by improving
the SNR in our frequency band of interest.
Increasing the sampling rate,or OSR,lowers
the noise floor in the signal band of interest (all
frequencies less than 1/2 of fs).

W kommunikazijax s wisokoj boewoj ystojschiwostju polosa mozet bit i 1 herz

no y radara minimum 8 megaherz
######################

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5048
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 20:34. Заголовок: http://www.actel.com..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5049
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 20:41. Заголовок: Texas Instruments t..


Texas Instruments teorija i praktika dlja 14 bit 190 msps ADC
############################################
By using three ADCs instead of one, the SNR ideally improves by 4.8 dB, as derived below, which boosts the 14-bit ADC (SNR ∼74dB) to a 16-bit ADC level (SNR ∼79dB).

he averaging technique reduces uncorrelated white noise, but has no effect on distortions inherent to the ADC design that might be common to all three ADCs. If, for example, the ADC creates a large third-order distortion product, it will show up in each ADC used and averaging won't reduce it. Therefore, averaging only improves SNR, but not spurious free dynamic
#############################################################################
range (SFDR).
###########

ywelichit SFDR mozno s pomoschju dithering - ....dobawleniaj schuma


Zamer resultata
############


Measurements
In order to verify the SNR gain, a board was designed containing three ADS5546 ADCs (14-bit, 190 Msps) and an FPGA that was used to perform a 3:1 averaging function. Using two or three standalone ADC evaluation modules (EVM) for this experiment usually doesn't work as well, because noise coupled into the cable assembly is correlated and, therefore, doesn't average out.
#################
Furthermore, if the cables are not matched very well, skew between ADCs adds phase mismatch and further degrades the overall SNR.


http://www.eetimes.com/design/automotive-design/4009960/Multiple-A-Ds-versus-a-single-one-pushing-high-speed-A-D-converter-SNR-beyond-the-state-of-the-art<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5050
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 20:45. Заголовок: w itoge poluchilos ..


w itoge poluchilos

Table 1: Results of test; SNRJitter is converted to dB FS: SNR[dB FS]= SNR[dBc]+1 (at -1 dB FS)
(Click to enlarge image)


zamer na 210 mgz dlja 1 ADC -70 db protiv 3 ADC -74.5 db
#########################################

http://www.eetimes.com/design/automotive-design/4009960/Multiple-A-Ds-versus-a-single-one-pushing-high-speed-A-D-converter-SNR-beyond-the-state-of-the-art<\/u><\/a>


This article shows how averaging the outputs of multiple high-speed ADCs can be used to improve data converter SNR. While an alternate technique of oversampling the input signal using faster ADCs is possible, the averaging approach seems preferable because faster ADCs which enable oversampling may not be available, and lower-speed ADCs used in an averaging approach may have better initial SNR specifications and lower power.


As expected, the SNR of the system decreased as the input signal frequency was increased. The reason is that the clock signal jitter affects the aggregate SNR of the system, and the SNR reduction is dependent on the input signal frequency. This paper analyzed the effects of jitter internal and external to the ADCs, finding close agreement between experiment and theory.

In summary, averaging the outputs of multiple ADCs can be used to improve state-of-the-art data converters. ADCs with low internal aperture jitter help maximize the SNR gain. With proper care taken with the input matching circuit and clock jitter, the SNR gains can match the 4.8 dB improvement predicted by theory when averaging three ADCs.


About the Authors
Grant Christiansen is an Engineering Manager at Texas Instruments, where he is lead for the signal-chain and digital power applications teams. He has four patents in read-channel applications and earned his MSEE from the University of Minnesota.

Thomas Neu is a Field Applications Engineer for Texas Instruments, where he provides customer support with system and circuit designs. He received his MSEE in RF/Communication from Johns Hopkins University.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5051
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 07.11.10 20:57. Заголовок: TI ADC dlja RLS iz..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5055
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 13:04. Заголовок: Powtor With stretc..


Powtor

With stretch processing we are limited to a range extent that is usually smaller than a pulse width.
##############################################################
Thus, we couldn’t use stretch processing for search because it requires looking for targets over a large range extent, usually many pulse widths long.
##################
We could use stretch processing for track because we already know range fairly well but want a more accurate measurement of
###################################################################################
it.

We must point out that, in general, wide bandwidth waveforms, and thus the need for stretch processing, is “overkill” for tracking.


Generally speaking, bandwidths of 1s to 10s of MHz are sufficient for tracking
####################################################


Stretch processing does not relieve the bandwidth requirements on the rest of the radar.
##########################################################

Specifically, the transmitter must be capable of generating and amplifying the wide bandwidth signal, the antenna must be capable of radiating the transmit signal and capturing the return signal, and the receiver must be capable of heterodyning and amplifying the wide bandwidth signal. This poses stringent requirements on the transmitter, antenna and receiver but current technology has advanced to be point of being able to cope with the requirements.


stretch processor has the same range resolution as a matched filter.
###########################################


Thus, the stretch processor encounters a SNR loss of relative to the matched filter. This means that we should be careful about using stretch processing for range extents that are a significant part of the transmit pulse width.

www.ece.uah.edu/courses/material/EE710-Merv/Stretch.doc

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5056
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 13:20. Заголовок: http://www.ll.mit.ed..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5066
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 17:25. Заголовок: opredelenija Raytheo..


opredelenija Raytheon

Stretch Processing.Stretch processing is a technique frequently used to pro-

cess wide bandwidth linear FM waveforms. The advantage of this technique is that it allows the effective IF signal bandwidth to be substantially reduced, allowing digitiza- tion and subsequent digital signal processing, at more readily achievable sample rates. By applying a suitably matched chirp waveform to the receiver first LO, coincident with the expected time of arrival of the radar return, the resultant IF waveform has a significantly reduced bandwidth for targets over a limited range-window of inter- est. Provided that the limited-range window can be tolerated, a substantially reduced processing bandwidth allows more economical A/D conversion and subsequent digital signal processing. It also allows a greater dynamic range to be achieved with lower- rate A/D converters than would be achievable if digitization of the entire RF signal bandwidth were performed.

If the LO chirp rate is set equal to the received signal chirp rate of a point target, the resultant output is a constant frequency tone at the output of the stretch processor receiver, with frequency∆tB/T, where∆t is the difference in time between the received signal and the LO chirp signal, andB/T is the waveform chirp slope (chirp bandwidth/ pulse width). Target doppler is maintained through the stretch processing, producing an output frequency offset equal to the doppler frequency, though the wide percentage bandwidth often used means that the doppler frequency can change significantly over the duration of the pulse.

Ignoring the effect of target doppler, the required RF signal bandwidth is equal to the transmitted waveform bandwidth. Given the RF signal bandwidthBR, the received pulse widthTR, and the range interval∆T, the required LO reference waveform dura- tion is given by

http://www.scribd.com/doc/17534054/Chapter-6-Radar-Receivers<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5067
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 20:40. Заголовок: Effect of Characteri..


Effect of Characteristics on Performance.Noncoherent pulse radar perfor-

mance is affected by front-end characteristics in three ways. Noise introduced by the front end increases the radar noise temperature, degrading sensitivity, and limits the maximum range at which targets are detectable. Front-end saturation on strong signals may limit the minimum range of the system or its ability to handle strong interference. Finally, the front-end spurious performance affects the susceptibility to off-frequency interference.

Coherent radar performance is even more affected by spurious mixer characteris- tics. Range and velocity accuracy is degraded in pulse doppler radars; stationary target cancellation is impaired in MTI (moving-target indication) radars; and range sidelobes are raised in high-resolution pulse compression systems.


Modern radar systems are mostly designed to maxi- mize the linear operating region, with limiters used only to handle excessively large signals that inevitably exist under worst case conditions.


Applications.The I/Q demodulator, also referred to as a quadrature channel

receiver, quadrature detector, synchronous detector, or coherent detector, performs fre- quency conversion of signals at the IF frequency to a complex representation,I+ jQ centered at zero frequency. The baseband in-phase (I) and quadrature-phase (Q) signals are digitized using a pair of A/D converters providing a representation of the IF signal, including phase and amplitude without loss of information. The resulting digital data can then be processed using a wide variety of digital signal-processing algorithms, depend- ing on the type of radar and mode of operation. Processing such as pulse compression, doppler processing, and monopulse comparison, all require amplitude and phase infor- mation. The predominance of digital signal processing in modern radar systems has led to almost universal need for Nyquist rate sampled data. In many modern radar systems, digitalI andQ data is now generated using IF sampling followed by digital signal pro- cessing used to perform the baseband conversion as described in Sections 6.10 and 6.11. I/Q demodulators are still used, though their use is increasingly limited to wider band- width systems where A/D converters are not yet available with the required combination of bandwidth and dynamic range to perform IF sampling.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5068
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 20:51. Заголовок: RADAR RECEIVERS 6.35..


RADAR RECEIVERS
6.35
DC Offset.Small signals and receiver noise can be distorted by an offset in
the mean value of the A/D converter output unless the doppler filter suppresses this
component.

False-alarm control in receivers without doppler filters is sometimes degraded by errors of a small fraction of the least significant bit (LSB), so correction is preferably applied at the analog input to the A/D. DC offsets can be measured using digital pro- cessing of the A/D converter outputs and a correction applied using D/A converters, as shown in Figure 6.13. DC offset correction can also be performed effectively in the digital domain, provided that the DC offset at the input of the A/D converter is not so large that it results in a significant loss of available dynamic range.

Many of the I/Q demodulator errors described above are either reduced dramati- cally or eliminated using IF sampling. This, along with the reduction of hardware required, are the reasons that IF sampling (described in Sections 6.10 and 6.11) is becoming the dominant approach.
6.10 ANALOG-TO-DIGITAL CONVERTERS

The high-speed A/D converter is a key component in receivers of modern radar sys- tems. The extensive use of digital signal processing of radar data has resulted in a demand for converters with both state-of-the-art sampling rates and dynamic range.

Analog to digital converters transform continuous time analog signals into discrete time digital signals. The process includes both sampling in the time domain, convert- ing from continuous time to discrete time signals and quantization, converting from continuous analog voltages to discrete fixed-length digital words. Both the sampling and quantization process produce errors that must be minimized in order to limit the radar performance degradation. In addition, a variety of other errors such as additive noise, sampling jitter, and deviation from the ideal quantization, result in non-ideal A/D conversion.
Applications.The conventional approach of using a pair of converters to digi-

tize theI andQ outputs of an I/Q demodulator is, in many cases, being replaced by digital receiver architectures where a single A/D converter is followed by digital signal processing to generateI andQ data. Digital receiver techniques are described in Section 6.11.

Although the dividing line is arbitrary and advancing with the state-of-the-art, radar receivers are often classified as either wideband or high dynamic range. Different radar functions put a greater emphasis on one or the other of these parameters. For example, imaging radars put a premium on wide bandwidth, whereas pulse doppler radars require high dynamic range. Because radars are often required to operate in a variety of modes with differing bandwidth and dynamic range requirements, it is not uncommon to use different types of A/D converter, sampling at different rates for these different modes.
Data Formats.The most frequently used digital formats for A/D converters are
2’s complement and offset binary.10
The 2’s complement is the most popular method of digital representation of signed
integers and is calculated by complementing every bit of a given number and adding one.

The Gray code10 is also used in certain high-speed A/D converters in order to reduce the impact of digital output transitions on the performance of the A/D con- verter. The Gray code allows all adjacent transitions to be accomplished by the change of a single digit only.
Delta-Sigma Converters.Delta-sigma converters differ from conventional

Nyquist rate converters by combining oversampling with noise-shaping techniques to achieve improved SNR in the bandwidth of interest. Noise shaping may be either low- pass or bandpass depending on the application. Delta-sigma architectures provide poten- tial improvements in spurious-free dynamic range (SFDR) and SNR over conventional Nyquist converters where tight tolerances are required to achieve very low spurious performance. Digital filtering and decimation is required to produce data rates that can be handled by conventional processors. This function is either performed as an integral part of the A/D converter function or can be integrated into the digital downconversion function used to generate digitalI andQ data, as described in Section 6.11.
Performance Characteristics.The primary performance characteristics of A/D

converters are the sample rate or usable bandwidth and resolution, the range over which the signals can be accurately digitized. The resolution is limited by both noise and distortion and can be described by a variety of parameters.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5069
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 20:57. Заголовок: Opredelenija Raytheo..


Opredelenija Raytheon 2008

http://www.scribd.com/doc/17534054/Chapter-6-Radar-Receivers<\/u><\/a>

Sample Rate.Sampling of band-limited

signals is performed without aliasing distortion, provided that the sample rate (fs) is greater than twice the signal bandwidth and provided the sig- nal bandwidth does not straddle the Nyquist fre- quency (fs/2) or any integer multiple (Nfs/2).

In conventional baseband approaches, sam- pling is usually performed at the minimum rate to meet the Nyquist criteria. Since the basebandI and
Q signals have bandwidths (B/2) equal to half the
IF signal bandwidth, a sample rate just greater than
the IF bandwidth is required (see Figure 6.14).

For IF sampling, a frequency at least twice the IF bandwidth is required; however, oversampling is typically employed to ease alias rejection filtering and to reduce the effect of A/D converter quantization noise. IF sampling is often performed with the signal located in the second Nyquist region, as shown in Figure 6.15 or in higher Nyquist regions.

Stated Resolution.The stated resolution of an A/D converter is the number of

output data bits per sample. The full-scale voltage range of a Nyquist rate converter is given byVFS = 2N Q, whereN is the stated resolution andQ is the least significant bit (LSB) size.
Signal-to-Noise-Ratio (SNR).SNR is the ratio of rms signal amplitude to rms

A/D converter noise power. For an ideal A/D converter, the only error is due to quan- tization. Provided that the input signal is sufficiently large relative to the quantization size and uncorrelated to the sampling signal, the quantization error is essentially ran- dom and is assumed to be white. The rms quantization noise isQ/ 12 , and signal- to-quantization-noise ratio (SQNR) of an ideal A/D converter is given by
SQNR(dB)= 6.02N+1.76
(6.37)

Practical A/D converters have additional sampling errors other than quantization, including thermal noise and aperture jitter. Provided that these additional errors can be characterized as white, they can be combined with the quantization noise with a resulting SNR less than the theoretical SNR of the ideal converter. Because various A/D converter error mechanisms are dependent on input signal level and frequency, it is important to characterize devices over the full range of input conditions to be expected. The available signal-to-noise ratio of state-of-the-art high-speed A/D con- verters has been shown11 to fall off by one-bit (6 dB) for every doubling of the sample rate. Over-sampling of the signal followed by filtering and decimation provides an improvement of one half-bit (3 dB) in the achievable signal-to-noise-ratio for each doubling of the sample rate. Thus, for high dynamic-range applications, the best per- formance is achieved using a state-of-the-art A/D converter that has a maximum sample rate just sufficient for the application.


Spurious Free Dynamic Range (SFDR).SFDR is the ratio of the single-tone sig-
nal amplitude to the largest spurious signal amplitude and is usually stated in dB.
Similar to SNR, the spurious performance of an A/D converter is dependent on the

input signal frequency and amplitude. The frequency of spurious signals is also depen- dent on the input signal frequency with the highest values typically due to low order harmonics or their aliases. When using IF sampling with a significant over-sampling ratio (fs B/2), the worst spurious signals may be avoided by choosing the sample frequency relative to signal frequency such that the unwanted spurious signals fall outside the signal bandwidth of interest. If the worst case spurious can be avoided, the specified SFDR is less important than the levels of the specific spurious components that fall within the bandwidth of interest. Again, it is important to characterize devices over the range of expected operating conditions.

The impact of A/D converter spurious signals on radar performance depends on the type of waveforms being processed and the digital signal processing being performed. In applications using chirp waveforms with large time-bandwidth products, spurious signals are less critical as they are effectively rejected in the pulse compression pro- cess because their coding does not match that of the wanted signal. In pulse doppler applications, spurious signals are of much greater concern because they can create components with doppler at a variety of frequencies that may not be rejected by the clutter filtering.
Signal-to-Noise-and-Distortion Ratio (SINAD).SINAD is the rms signal ampli-

tude to the rms value of the A/D converter noise plus distortion. The noise plus dis- tortion includes all spectral components, excluding DC and the fundamental up to the Nyquist frequency. SINAD is a useful figure of merit for A/D converters, but in digital receiver applications, where the worst spurious components may fall outside of the bandwidth of interest, it is not necessarily a key discriminator between competing converters for a specific application.
Effective Number of Bits (ENOB).The term effective number of bits is often used

to state the true performance of an A/D converter and has been stated in the literature11 in terms of SINAD and SNR, as given below. Consequently, it is important to differ- entiate between definitions when using this term.


Two Tone Intermodulation Distortion (IMD).Two tone intermodulation distortion

is also important in receiver applications. Testing is performed with two sinusoidal input signals of unequal frequency and levels set such that the sum of the two inputs does not exceed the A/D converter full-scale level. Similar to IMD for amplifiers, the most significant distortion is usually second order or third order IMD products. However, due to the complex nature of the distortion mechanism in A/D converters, the amplitude of IMD products is not easily characterized and predicted by the measurement of an input intercept point.


Input Noise Level and Dynamic Range.Accurate setting of the A/D con-

verter input noise level relative to the A/D converter noise is critical to achieving the optimum trade-off between dynamic range and system noise floor. Too high a level of noise into the A/D converter will degrade the available dynamic range; too low a level will degrade the overall system noise floor. Sufficient total noise should be applied to the A/D converter input to randomize or “whiten” the quantization noise.

This can be achieved with rms input noise (s) equal to the LSB step size (Q). In addition, the input noise power spectral density should be sufficient to minimize the impact on system noise due to the A/D converter noise. The impact on overall noise due to quantization noise is given by7

ss
s
22
2
2
112
= +Q
s≥Q
(6.40)
Typical operating points are in the range ofs /Q= 2 tos /Q= 1, with corresponding
noise power degradation due to quantization of 0.09 dB and 0.35 dB, respectively.

In practice, the SNR of high-speed converters is often such that the noise of the A/D converter is significantly greater than the theoretical quantization noise. In addi- tion, the A/D converter input signal noise bandwidth may be significantly less than the Nyquist bandwidth. This is a significant factor in IF sampling applications where the IF noise bandwidth is often less than ¼ of the Nyquist bandwidth. In this case, the total input and A/D converter noise must be sufficient to whiten the quantization noise, and the power spectral density of the input noise should be sufficiently greater than that of the A/D converter, as illustrated in Figure 6.16. In some cases, out-of-band noise may be added to whiten the A/D converter quantization noise and spurious signals. The out- of-band noise is then rejected through subsequent digital signal processing.

A/D Converter Sample Clock Stability.The stability of the sample clock is

critical to achieving the full capability of an A/D converter. Sample-to-sample varia- tion in the sampling interval, called aperture uncertainty or aperture jitter, produces a sampling error, proportional to the rate of change of input voltage. For a sinusoidal input signal, the SNR due to aperture uncertainty alone is given by12
SNR(dB)=−20log10(2p fsj)
(6.43)
wheref= input signal frequency
sj=rms aperture jitter

Similarly, close-to-carrier noise sidebands present on the sample clock signal are transferred to sidebands on the sampled input signal, reduced by 20log10 (f /fS ) dB. For example, in an IF sampling application with the input signal ¾ of the sample frequency, the close-to-carrier phase noise of the sample clock will be transferred to the output of the A/D converter output data signal, reduced by 2.5 dB

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5070
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.11.10 21:03. Заголовок: 6.11 DIGITAL RECEIVE..


6.11 DIGITAL RECEIVERS

The availability of high-speed analog-to-digital converters capable of direct sam- pling of radar receiver IF signals has resulted in the almost universal adoption of digital receiver architectures over conventional analog I/Q demodulation. In a digital receiver, a single A/D converter is used to digitize the received signal, and digital signal processing is used to perform the downconversion toI andQ baseband sig- nals. Continuing advances in sampling speeds are leading to sampling at increasing frequencies, sometimes eliminating the need for a second downconversion, with the possibility approaching of sampling directly at the radar RF frequency. The benefits of IF sampling over conventional analog I/Q demodulation are

●Virtual elimination ofI andQ imbalance
●Virtual elimination of DC offset errors
●Reduced channel-to-channel variation
●Improved linearity
●Flexibility of bandwidth and sample rate
●Tight filter tolerance, phase linearity, and improved anti-alias filtering
●Reduced component cost, size, weight, and power dissipation

The use of a high IF frequency is desirable as it eases the downconversion and filtering process; however, the use of higher frequencies places greater demands on the performance of the A/D converter. Direct RF sampling is considered the ulti- mate goal of digital receivers, with all the tuning and filtering performed through digital signal processing. The advantage being the almost complete elimination of analog hardware. However, not only does the A/D converter have to sample the RF directly, but unless it is preceded by tunable RF preselector filters, the A/D converter input must have the dynamic range to handle all of the signals pres- ent in the radar band simultaneously. Generally, the interference power entering the A/D converter is proportional to the bandwidth of components in front of the
A/D converter. The required A/D converter SNR to avoid saturation on the interfer-
ing signals is given by


The crest factor is the peak level that can be handled within the full-scale range of the A/D converter relative to the rms interference level. It is set to achieve a sufficiently high probability that full-scale will not be exceeded. For example, with gaussian noise, a crest factor of 4 sets the peak level at the 4s level (12 dB above the rms level) with a probability of 0.999937 that the full-scale is not exceeded on each A/D converter sample.
Setting the system noise level power spectral density into the A/D converterR(dB)
above the A/D converter noise give

The generation of basebandI andQ signals from the IF sampled A/D converter data is performed using digital signal processing and can be implemented through a variety of approaches.7 Two approaches are described next.
Digital Downconversion.The digital downconversion approach is shown in

Figure 6.17. The signal is sampled by the A/D converter, frequency shifted to base- band, low-pass filtered, and decimated to produce I/Q digital data. The signal spectrum at each stage of the process is shown in Figure 6.18. In continuous-time (Fig. 6.18a), frequency is in hertz and is represented byF. In discrete-time (Fig. 6.18b–e), fre- quency is in radians per sample and is represented byw. The spectrum of the ana- log input signalx(t) is shown in Figure 6.18a, with the signal spectrum centered at
F0hertz. The signal is sampled by the A/D converter at frequency Fs, producing the
time sequence
x n
( )and frequency spectrum
X( )
ωcentered at frequencyw0 with the
image centered at−w0. The A/D converter output signal is then frequency shifted by
complex multiplication with the reference signalej n
−w0, corresponding to a reference
signal rotating atw0 radians per sample, centering the signal spectrumX( )
wabout

zero. The unwanted image is re-centered at−2w0 ifw0> p /2 or−2w0+ 2p ifw0≤ p /2. The unwanted image is then rejected using the FIR filter with impulse responseh(n) producing outputˆ( )
x n with spectrumˆ( )
Xw. Finally, the sample rate is reduced by


RADAR RECEIVERS
6.45
provide the desired stopband rejection response. Thekth order CIC filter for decima-
tion factorD has transfer function:
Hz
z
zz
K
m
mD
K
DK
( )=
=−−



=−
−−
∑01
1
11
(6.49)

A polyphase filter is a filter bank that splits an input signal intoD sub-band filters operating at a sample rate reduced by a factorD, providing a computationally efficient approach to performing the FIR filtering followed by decimation in a digital receiver. Rather than computing all the filter output samples and only using everyDth sample, the polyphase approach calculates only those that are actually used. Figure 6.22 and Eq. 6.50 define how the filter with impulse responseh(n), followed with decimation by factorD, is implemented in a polyphase structure. The input signalx(n) is divided intoD parallel paths by the “commutator,” which outputs samples in turn, rotating in a counterclockwise direction, to each of the FIR filters operating at the reduced sample rate. The outputs of the FIR filters are summed to produce the output signaly(m). This architecture is beneficial as it provides an approach that can be easily parallelized at rateFX /D.
pk(n) = h(k+ nD)
k= 0, 1, …,D- 1
(6.50)
n=0, 1, …, K-1
Multi-Channel Receiver Considerations.Modern radar systems rarely con-

tain only one receiver channel. Monopulse processing, for example, requires two or more channels to process sum and delta signals. Additionally, the channels must be coherent, synchronized in time, and well matched in phase and amplitude. Digital beamforming systems require a large number of channels with similar coherence and synchronization requirements and tight phase and amplitude track- ing. The coherence requirement dictates the relative phase stability of LO and A/D converter clock signals used for each receive channel. The time synchroniza- tion requirement means that A/D converter clock signals for each channel must be aligned in time and decimation must be performed in phase for each channel. Phase and amplitude imbalance between channels is a result of variation in the

http://www.scribd.com/doc/17534054/Chapter-6-Radar-Receivers<\/u><\/a>

opredelenija raytheon

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5074
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.11.10 00:16. Заголовок: Walt Kester iz AD /..


Walt Kester iz AD /awtor knigi perewedennij na russkij w 2007 )

o averaging,dither i oversampling

http://www.analog.com/library/analogDialogue/archives/40-02/adc_noise.html<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5078
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.11.10 14:06. Заголовок: poprawka Appolo F..


poprawka

Appolo FPQ-6 radar s tochnostju +- 1.5 metra imel polosu wsego 1.6 megaherz pri nesuschej IF/Pch
w perwom variante 30 megaherz

Dinamicheskij diapazon bolee 120 db

Schum -4 db


Maximalnaja dalnsot -60 000 km .Diametr cassegr. antenni 8.8 metra

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680003409_1968003409.pdf<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5112
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 17.11.10 00:14. Заголовок: Capturing a signal b..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5138
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 19.11.10 03:03. Заголовок: powtor 35 ghz radar..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5139
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 19.11.10 03:17. Заголовок: polosa radara (tipa ..


polosa radara (tipa F-22) w zawisimosti ot zadachi
********************************************


Waveform Variations by Mode.Although the specific waveform is hard to pre-

dict, typical waveform variations can be tabulated based on observed behavior of a number of existing A-S radar systems. Table 5.1 shows the range of parameters that can be observed as a function of radar mode. The parameter ranges listed are PRF, pulse width, duty cycle, pulse compression ratio, independent frequency looks, pulses per coherent processing interval (CPI), transmitted bandwidth, and total pulses in a Time-On-Target (TOT).

Obviously, most radars do not contain all of this variation, but modes exist in many fighter aircraft, which represent a good fraction of the parameter range. Most fighter radars are frequency agile since they will be operated in close proximity to similar or identical systems. The frequency usually changes in a carefully controlled, completely coherent manner during a CPI.8 This can be a weakness for certain kinds of jamming since the phase and frequency of the next pulse is predictable. Sometimes to counter- act this weakness, the frequency sequence is pseudorandom from a predetermined set with known autocorrelation properties, for example, Frank, Costas, Viterbi, P codes.16 A major difficulty with complex wideband frequency coding is that the phase shift- ers in a phase scanned array must be changed on an intra- or inter-pulse basis greatly complicating beam steering control and absolute T/R channel phase delay. Another challenge is minimizing power supply phase pulling when PRFs and pulsewidths vary over more than 100:1 range. MFAR systems not only have a wide variation in PRF and pulsewidth but also usually exhibit large instant and total bandwidth. Coupled with the large bandwidth is the requirement for long coherent integration times. This requirement naturally leads to extreme stability master oscillators and ultra low-noise synthesizers.44

http://www.scribd.com/doc/17533868/Chapter-5-Multi-Functional-Radar-Systems-for-Fighter-Aircraft<\/u><\/a>

5.12

MULTIFUNCTIONAL RADAR SYSTEMS FOR FIGHTER AIRCRAFT

1.Real beam map 0.5 -10 mgz
2.Doppler beam sharp 5-25 mgz
3. SAR 10 -500 mgz
4.A-S range 1-50 mgz
5.PVU 1-10 mgz
6.TF/TA 3-15 mgz
7.Sea surface search 0.2 -500 mgz
8.Inverse SAR 5-100 mgz
9. GMTI 0.5-15 mgz
10.Fixed target track 1-50 mgz
11.GMTT 0.5 -15 mgz
12.Sea Surface track 0.2-10 mgz
13.Hi power Jam 1-100 mgz
14.CAl/A.G.C 1-500 mgz
15A-S data link 0.5-250 mgz

T.e dlja bolschinstwa funkzij dostatochen AD9467 16 bit ADC 250 msps s Fin do 300 mgz
Realnij dinamicheskij diapazon -74 db, ENOB -12 bit

250 msps eto polosa 125 mgz

Radar Appolo prgramm AN/FPQ-6 imel antennu 8.8 metra ,din.diapazon bolee 120 db,
rabotal w diapazone 5.7 ghz , imel polosu signala wsego 1.6 mgz ,
*********************************************************

dalnost 60 000 km ,
srednjuu moschnost 4.8 kwt ,impulsnuju -3 megawatta i tochnost 2-3 metra


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5163
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 21.11.10 18:20. Заголовок: W otlichii ot AZP ..


W otlichii ot AZP ,rossijskie OY ot Prokopenko FGUP Pulsar ostawljut wpolne prilichnoe wpechatlenie ..

Postawit zadachu - Ego gruppa werojatno smozet sozdat ....

Texas Instruments op amp delivers industry's lowest distortion for driving high-speed 16-bit ADCsMonday September 13, 2010 - 08:00 AM EDT
PRNewsWire News ReleasesReleased By Texas Instruments Incorporated
New op amp maximizes performance across the signal chain for wireless broadband communications, high-speed data acquisition
Share:

Rating:

Text Size:
DALLAS, Sept. 13 /PRNewswire/ -- Texas Instruments Incorporated (TI) (NYSE: TXN) today introduced a high-linearity, low-distortion, fully-differential operational amplifier (op amp) that delivers 16-bit full-scale precision up to 200 MHz IF to
#############################################################################
maximize signal chain performance for wireless base stations, high-speed data acquisition, test and measurement, medical imaging and defense applications.
##############################

The THS770006 op amp has an output third-order intercept (OIP3) of 48 dBm and the lowest distortion in its class, with a third-order intermodulation distortion (IMD3) of -107 dBc at 100 MHz, at least 14 dB better than competitive amplifiers. For more information and to order samples of the THS770006 op amp, visit www.ti.com/ths770006-pr.

"The advancements we've made in the performance of the THS770006 op amp will enable greater levels of receiver dynamic range in wireless systems – a requirement for base station manufacturers to meet the adjacent channel rejection and blocker requirements of next-generation networks," said Steve Anderson, senior vice president of TI's High-Performance Analog business unit. "Our customers can have confidence knowing the THS770006 op amp will help them realize the full potential of their high-speed signal chain."

Key features and benefits

Best-in-class distortion and high linearity help designers meet the stringent sensitivity and bit-error rate (BER) requirements of emerging wireless standards, such as LTE and multi-carrier GSM.
Seamlessly drives TI high-speed analog-to-digital converters (ADCs) – including the new 16-bit, 130-MSPS ADS5493 – with full-scale, 3-V peak-to-peak dynamic range for optimal design flexibility and signal-to-noise ratio (SNR) performance.
Provides fast overdrive recovery of 7.5 ns (maximum) to help minimize the impact of lost or erroneous data from jammers and blockers, resulting in improved wireless receiver signal integrity.
Speeds time-to-market when combined with TI's complete high-speed signal chain portfolio – including high-performance multicore C6000™ DSPs, high-speed ADCs like the ADS5493 and ADS4149, and clocking solutions such as the CDCE72010 – for wireless base stations, high speed data acquisition, test and measurement, medical imaging and defense applications.


Availability and pricing

The THS770006 op amp is available now in a 4-mm x 4-mm QFN-24 package with a thermal pad. Pricing starts at $4.10 in 1,000-unit quantities. The THS770006EVM evaluation module is also available now, priced at $99.

Samples of the ADS5493 ADC are available today. The ADS5493EVM evaluation module is also available now, priced at $299. Production quantities of the ADS5493 ADC will be available in first quarter 2011 in a 7-mm x 7-mm QFN-48 package with a thermal pad. Pricing will start at $65 in 1,000-unit quantities.

Learn more about TI's signal chain portfolio by visiting the links below:

Order THS770006 op amp evaluation modules and samples: www.ti.com/ths770006-pr
Download TI's new signal chain selection guide: www.ti.com/signalchain-pr
Download TI's updated communications infrastructure solutions guide: www.ti.com/ciguide
Learn about "Input impedance matching with fully differential amplifiers" by viewing Jim Karki's short video at www.ti.com/inputimpedance-pr


About Texas Instruments

Texas Instruments (NYSE: TXN) helps customers solve problems and develop new electronics that make the world smarter, healthier, safer, greener and more fun. A global semiconductor company, TI innovates through manufacturing, design and sales operations in more than 30 countries. For more information, go to www.ti.com.

Trademarks

All registered trademarks and other trademarks belong to their respective owners.

TXN-P

SOURCE Texas Instruments Incorporated

http://investor.wedbush.com/wedbush/news/read?GUID=14672194<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5172
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.11.10 23:57. Заголовок: Skorostnie Oy razrab..


Skorostnie Oy razrabatiwaet FGUP Pulsar (Prokopenko) . O Rossijskix AZP nichego ne slischno ...

staraya stat'ya

БЫСТРОДЕЙСТВУЮЩИЕ АНАЛОГОВЫЕ МИКРОСХЕМЫ
НА БАЗЕ ВЫСОКОЧАСТОТНОЙ КОМПЛЕМЕНТАРНОЙ БИПОЛЯРНОЙ ТЕХНОЛОГИИ



Р.Н. Виноградов, С.В. Корнеев, Д.Л. Ксенофонтов





Цифровая электроника захватывает все большие сферы обработки аналогового сигнала, что, естественно, приводит к снижению относительной доли аналоговых микросхем в полупроводниковой элементной базе. Тем не менее, прогресс технологии полупроводниковых микросхем приводит к расширению номенклатуры, повышению частотного диапазона и расширению областей применения аналоговых микросхем в тех областях, где широко использовались дискретные полупроводниковые компоненты.

Преобразование аналогового сигнала в цифровой код определяется точностными и частотными ограничениями аналого-цифровых преобразователей (АЦП). Если после АЦП обработка сигнала происходит в цифровой форме и построена полностью на монолитных микросхемах, то в предварительной аналоговой обработке до сих пор широко используют дискретные приборы т.к. аналоговая микроэлектроника часто не удовлетворяет предъявляемым требованиям.

В настоящее время отсутствие отечественных высокочастотных микросхем для аналоговой обработки сигнала, начинает восполняться новыми разработками в области создания быстродействующих аналоговых микросхем серии К1432, проводимыми в ГУП ”НПП ”Пульсар”

http://k1432.nm.ru/paper_1_2003.htm<\/u><\/a>

http://npp-pulsar.rosprom.org/prod.php<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5173
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 00:34. Заголовок: Технологии В «СИТРО..


Технологии
В «СИТРОНИКС Микроэлектроника» для разработки и производства микросхем используются следующие технологические процессы:

EEPROM, КМОП
• Проектная норма – 180 нм
• 4 - 6 металлов
• Микросхемы с энергонезависимой памятью: микроконтроллеры 8-16 бит, память 4Мб, чипы смарт-карт, чипы радиочастотной идентификации

Биполяр
• 7 - 45V
• Аналоговые ИС управления питанием
• Линейные преобразователи
• Операционные усилители
• ШИМ – контроллеры
• Драйверы LED

КНИ
• Проектная норма – 250 нм
• Проектная норма – 180 нм (2012 год)
• Чипы памяти, микроконтроллеров, процессоров, ЦАП/АЦП с повышенными параметрами надежности
######################################################################

A kakix ?

БиКМОП SiGe
• Проектная норма – 250 нм (2011 год)
• Проектная норма – 180 нм (2012 год)
• СВЧ и УВЧ до 10ГГц (АФАР, конвертеры и синтезаторы для радиолокационных систем и спутниковой связи)
##########################################################################

КМОП
• Проектная норма – 90 нм (2012 год)
• 6 – 9 металлов
• КМОП + встроенный флеш 90 нм (2012 год)
• Логика, микроконтроллеры, системы-на-чипе


http://www.mikron.sitronics.ru/products/micron/technology/<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5174
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 00:40. Заголовок: ОАО «НИИМЭ и Микрон»..


ОАО «НИИМЭ и Микрон»

1996 – 2000

Разработаны и освоены быстродействующие ЦАП и АЦП схемы серии 572. Освоено более 200 типов интегральных схем, ранее выпускавшихся на других предприятиях страны.

http://www.mikron.sitronics.ru/about/history/<\/u><\/a>

http://www.radiant.su/rus/news/?action=show&id=178<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5175
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 00:47. Заголовок: Rossijskij DSP analo..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5176
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 13:03. Заголовок: проектирование анало..


проектирование аналоговых и цифровых СФ-блоков, в том числе: встраиваемых АЦП, ЦАП, ФАПЧ, микропроцессорные ядра, аппаратные вычислители и различные интерфейсы;

Дизайн-центр имеет соответствующий сертификат от 22 НИИ МО РФ.

http://mri-progress.ru/?cat=20<\/u><\/a>




БИС быстродействующего АЦП
Рубрика: bis.

Назначение микросхемы.
АЦП выполняет параллельное преобразование дифференциального аналогового напряжения в натуральный двоичный код. Предназначен для преобразования высокочастотных сигналов в диапазоне частот до 300 МГц.
########
Особенности БИС.
Структурная схема преобразователя состоит из аналоговой и цифровой частей.
В состав аналоговой части входят входной буфер, резистивный делитель для формирования сетки пороговых напряжений, две матрицы усилителей с интерполяцией, матрица компараторов, включенных по схеме активной интерполяции. Применение двойной активной интерполяции приводит к снижению дифференциальной нелинейности преобразования.
Опорное напряжение на резистивный делитель подается от внутреннего источника.
В состав цифровой части входит кодирующая логическая схема, преобразующая унитарный код матрицы компараторов в циклический код Грея, что снижает вероятность появления ошибок кодирования. Выходной сигнал кодирующей схемы преобразуется в натуральный двоичный код и запоминается в выходном регистре.
Принципиальные электрические схемы функциональных узлов аналоговой части преобразователя выполнены в биполярном элементном базисе. Цифровая часть схемы преобразователя выполнена с использованием КМОП схемотехники.

Преобразователь реализован по SiGe БиКМОП технологии.
########################################

Основные параметры.
Основные технические характеристики преобразователя

http://mri-progress.ru/?p=349<\/u><\/a>

8 razryadow i maxim. chastota Fin 80 mgz

rasprostranennie pch/IF

Radar -30 mgz (odna iz pch)
Sputnik -70 mgz(odna iz pch)
LTE/WCDMA -190 mgz



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5177
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 19:53. Заголовок: Новости ФГУП "НИ..


Новости ФГУП "НИИЭТ"
ФГУП "НИИЭТ" (г. Воронеж) в рамках ОКР "Номенклатура" завершает разработку серии мощных СВЧ LDMOS транзисторов 2П998А (РВЫХ=35 Вт), 2П998БС (РВЫХ =150 Вт) для применения в диапазоне рабочих частот до 500 МГц с напряжением питания 28 В. Транзисторы предназначены для комплектования усилительных модулей аппаратуры стационарных и бортовых средств связи специального и двойного назначения. Модули с использованием LDMOS транзисторов позволят увеличить энергетические параметры аппаратуры и её функциональные возможности. Подробнее смотрите на сайте www.niiet.ru .
Предприятие принимает предварительные заявки заинтересованных потребителей на поставку транзисторов с видом приёмки "5" начиная с августа 2010 года.
ФГУП «НИИЭТ» (г. Воронеж) завершил разработку серии мощных СВЧ низковольтных LDMOS транзисторов 2П986А, 2П986Б, 2П986В, 2П986Г для применения в диапазоне рабочих частот до 1 ГГц и транзисторов 2П986Д, 2П986ЕС для применения в диапазоне частот до 650 МГц. Подробнее смотрите на сайте www.niiet.ru

В рамках ФЦП "Развитие электронной компонентной базы и радиоэлектроники" на 2008-2015 годы ФГУП "НИИЭТ" закончил разработку первой отечественной СБИС 16-разрядного микроконвертера. Микросхема построена на базе усовершенствованного ядра архитектуры MCS-96. Высокая скорость выполнения арифметических и логических операций достигается благодаря наличию встроенного аппаратного умножителя (умножение 16×16 – 1 машинный цикл), делителя (деление 32/16 – 2 машинных цикла), сдвигателя (любой сдвиг – 1 машинный цикл). В состав микроконвертера входят восемь параллельно работающих 16‑разрядных АЦП,
#####################################################

Kakix ?

14‑разрядный ЦАП со временем установления выходного тока не более 11 нс, ОЗУ общего назначения объёмом 1000 байт, расширенное ОЗУ (XRAM) объёмом 2048 байт, FLASH память программ – 32 Кбайта, периферийные устройства – UART, блок высокоскоростного ввода-вывода (HSI/HSO), аппаратный ШИМ, сервер периферийных транзакций (PTS) и др. В микросхему встроен модуль отладки OCDS. По системе команд микроконвертер совместим с серийно выпускаемыми предприятием микроконтроллерами серии 1874. Изготовление образцов микроконвертера планируется в I квартале 2010 года.

www.niiet.ru

http://www.rosrep.ru/news/index.php?ELEMENT_ID=2902&SECTION_ID=31<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5178
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 21:17. Заголовок: СБИС 1879BM3 С..


СБИС 1879BM3 СБИС 1879ВМ3 реализует концепцию "система-на-кристалле" - содержит 2 Мбит статического ОЗУ, 2 АЦП 6 бит 600 МГц, 4 ЦАП 8 бит 300 МГц, производительное 128-разрядное процессорное ядро 150 МГц, цифровые интерфейсы.
Микросхема предназначена для предварительной обработки широкополосных аналоговых сигналов, формирования потока данных для вторичной обработки цифровым процессором сигналов (ЦПС), восстановления аналогового сигнала после вторичной обработки.

http://www.module.ru/ruproducts/proc.shtml<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5179
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 21:19. Заголовок: Помимо того, что наш..


Помимо того, что наша продукция сертифицирована по системе "Оборонсертифика", научно-исследовательский центр "РИФ" имеет Лицензию ФСБ на осуществление различных видов деятельности. Поэтому разработки ЗАО "НТЦ "РИФ" проходят несколько уровней контроля качества (от обычных лицензий до военной приемки).

Важным направлением нашей работы является производство измерительных устройств и устройств цифро-аналоговых преобразований (АЦП и ЦАП), которые продолжают находить широкое применение во многих областях научно-технических разработок.

Проекты ЗАО "НТЦ "Риф"

1 Система управления средствами ПВО
2 Ремонтный завод МР4
3 Комплекс сопряжения корабельных систем
4 Модель РЛС с АФАР

http://www.rif-spb.com/projects.html<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5180
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.11.10 21:26. Заголовок: (СБИС) 1879ВМ3. На в..


(СБИС) 1879ВМ3. На вопросы «Красной звезды» отвечает генеральный директор «Модуля» Юрий БОРИСОВ.

- Юрий Иванович, что представляет собой новая микросхема?

http://www.redstar.ru/2002/11/23_11/4_01.html<\/u><\/a>

-----------------------------------

Борисов Юрий Иванович

Руководство Минпромторга России - Заместитель министра

Борисов Юрий Иванович
Родился 31 декабря 1956 года в г. Вышний Волочек Калининской области.
Выпускник Калининского суворовского военного училища 1974 года.
Окончил Пушкинское высшее командное училище радиоэлектроники ПВО в 1978 году и Московский государственный университет им. М.В.Ломоносова в 1985 году. Доктор технических наук.
1974-1978 гг. - курсант Пушкинского высшего командного училища радиоэлектроники ПВО.
1978-1998 гг. - служба на офицерских должностях в Вооруженных Силах СССР, Российской Федерации.
1998-2004 гг. - генеральный директор ЗАО Научно-технического центра «Модуль».
С июля 2004 гг. по октябрь 2007 г. - начальник Управления радиоэлектронной промышленности и систем управления Федерального агентства по промышленности.
С 19 октября 2007 г. - заместитель руководителя Федерального агентства по промышленности.
2 июля 2008 года распоряжением Правительства Российской Федерации № 960-р назначен заместителем Министра промышленности и торговли Российской Федерации.
Награжден Орденом «За службу Родине в Вооруженных Силах СССР» III степени и медалями. Женат. Имеет двух сыновей.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5181
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 24.11.10 00:04. Заголовок: Kak ranee ykaziwalo..


Kak ranee ykaziwalos

1. Radar programmi Appolo imel dinamicheskij diapazon bolee 120 db ( analogowaja obrabotka signala )
8.8 metra Diametr antenni , 60 000 km dalnost , 5400 -5900 mgz(C-Band) IF= 30 mgz
Polosa signala 1.6 mgz i tochnost 3 metra

AN/FPQ-6 http://en.wikipedia.org/wiki/AN/FPQ-6<\/u><\/a>

2. Ywelichenie polosi wedet k powischeniju razreschenija ,sposobnosti otlichat loznie celi ot istinnix jabch
po kinematike dwizenija ,no sokr, chuststw . pri prochix rawnix

w MMW 35 ghz,13.7 metra ,35 ghz ,polosa 2000 mgz -razreschenie 100 mm ispolzuetsja strech processing
s 10 bit 20 MSPS ADC na 2.5-7.5 mgz ( resultat 90 goda)

3. Sowremennie publikazii s ispozowaniem 16 bit ADC ne dostigli dianmicheskij diapazon wische 120 db
######################################################################
kak w FPQ-6


16 bit ADC wo wtoroj PCH priemnika s wiskim dinamicheskim diapazonom
.105 DB dinamicheskij diapazon s 16 bit ADC
Lincoln laboratory -Nelinejnaja korrekzija 8- 16 bit ADC s
powischenime din.diapazona do 25 db
-------------------------------------

http://highfrequencyelectronics.com/Archives/May08/HFE0508_Cannata.pdf<\/u><\/a>
http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf<\/u><\/a>
http://highfrequencyelectronics.com/Archives/Nov08/1108_Friedman.pdf<\/u><\/a>


DARPA/Lincoln laboratory

http://www.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf<\/u><\/a>



ADC

16 bit

AD9467 -250 msps
http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf<\/u><\/a>
ADS5485 -200 msps
http://focus.ti.com/lit/ds/symlink/ads5485.pdf<\/u><\/a>
LTC2209 -160 msps
http://cds.linear.com/docs/Datasheet/2209fa.pdf<\/u><\/a>

12 bit 1 gsps -3.6 gsps (sdwoennii)

ADC12D1800
https://www.national.com/ds/DC/ADC12D1800.pdf
ADS5400
http://focus.ti.com/lit/ds/symlink/ads5400.pdf<\/u><\/a>

10 bit 2.5 gsps

http://www.e2v.com/news/e2v-s-new-10-bit-2-5-gsps-analogue-to-digital-data-converter-raises-the-bar-in-performance-/<\/u><\/a>
--
http://www.alcom.be/binarydata.aspx?type=doc/e2V_EV10AS150A.pdf<\/u><\/a>

4. W Rossii weduschie w oblasti sozdanija AZP werojatno

a. FGUP Progress
b. NTZ Modul ( Zam ministra Borisow bil ranee chefom NTZ Modul ) -ranee Wimpel
c. OAO RIF -SPB
d. NIIEME / Micron -572 serija

Kakoe iz FGUP/ OAO sposbno izgotowit 16 bit AZP s 200 -400 MSPS do Fin 300 mgz ,postarajus ' wijasnit

Texnologija 0.09 microna w Rossii est ' Process SiGE BicMos toze

16 bit AZP mozno ispolzowat w RLS , woennix sputn i troposfernix kommunikazijax ,grazd. WCDMA/LTE

nesuschaja PCH/IF

RADAR -30 mgz -2 pch
sputn -70 mgz -2 pch
WCDMA/LTE -190 mgz



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5182
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 24.11.10 00:30. Заголовок: JPL rabota (werojatn..


JPL rabota (werojatno nachala 90)

http://www.andraka.com/files/wxradar.pdf<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5184
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 24.11.10 22:56. Заголовок: http://esto.nasa.gov..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5185
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 24.11.10 23:01. Заголовок: LOCKHEED MARTIN USES..


LOCKHEED MARTIN USES DIGITAL BEAMFORMING TECHNOLOGY TO REDEFINE RADAR STATE-OF-THE-ART

MOORESTOWN, NJ, January 15th, 2008 -- Lockheed Martin [NYSE: LMT] successfully demonstrated digital beamforming (DBF) capability to locate and track live targets with its Scalable Solid-State S-band Radar (S4R) engineering development model.

DBF is the most advanced approach to phased-array antenna pattern control. It provides significant performance advantages over conventional analog beamforming techniques, including improved operations in severe environmental clutter and, through the use of multiple simultaneous beams, increased search and track timeline efficiency.

“Our S4R demonstration successes are quickly moving next generation radar technology – such as digital beamforming – from the laboratory to the fleet,” said Carl Bannar, vice president and general manager of Lockheed Martin’s Radar Systems line of business. “S4R will bring a huge radar technology leap to next generation multi-mission radars, ranging from littoral operations to ballistic missile defense.”

The S4R engineering development model is an active, electronically-steered digital array radar designed to be scalable to support multiple missions, including air surveillance, cruise missile defense, ballistic missile defense, counter target acquisition and littoral operations. The proven digital array radar design is derived from the S-band antenna developed for the U.S. Navy’s next-generation destroyer. The DBF signal processor was derived from the Aegis Ballistic Missile Defense signal processor.

The S4R engineering development model was developed using Silicon Carbide (SiC)- based high-power Transmit/Receive modules. SiC provides greater power than other commonly used materials due to its increased heat tolerance. With more power, the radar has longer range and provides more precise target discrimination.

This S4R milestone continues Lockheed Martin’s legacy of advanced naval radar development. The SPY-1 radar, the pre-eminent radar at sea today, is on 83 Aegis-equipped warships around the world, and is the main sensor for the Aegis Ballistic Missile Defense Weapon System.

Headquartered in Bethesda, MD , Lockheed Martin employs about 140,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services.

Media contact:Ken Ross, 856-722-6941; cell 856-912-5802; kenneth.b.ross@lmco.com

For additional information on Lockheed Martin Corporation, visit: http://www.lockheedmartin.com<\/u><\/a>



http://www.lockheedmartin.com/news/press_releases/2008/011508_DBFTechnology.html<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5191
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.11.10 13:07. Заголовок: NRL digital array ra..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5192
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.11.10 15:16. Заголовок: 8B. 3 A GENERIC RADA..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5193
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 25.11.10 21:19. Заголовок: Summer 2010 Vol. 19,..


Summer 2010 Vol. 19, No. 2


Model 71621
3 kanala s ADS5485 200 msps /16 bit TI

IF 120-160 mgz

To conserve resources, we will try an undersampling solution for digitizing the input signals. If we sample at 200 MHz, the signals of interest will fold as shown in Figure 7: the 120 MHz lower band edge translates to 80 MHz; the 140 MHz center frequency translates to 60 MHz; and the upper band edge translates to 40 MHz.

http://www.pentek.com/pipeline/19_2/Radar.cfm<\/u><\/a>
http://www.pentek.com/products/Detail.cfm?Model=71621<\/u><\/a>


Monopulse Radar Signal Processing

This is a real-life example of the signal processing involved with a typical monopulse radar application. As shown in Figure 3, the system uses a multi-element antenna where the received signals consist of three types: Azimuth, Elevation and the sum of these two. The signals to be digitized and processed are as follows:

* Azimuth difference or ΔA which is equal to A1 – A2
* Elevation difference or ΔE which is equal to E1 – E2
* Sum Channel Σ which is equal to the sum of A1 + A2 + E1 + E2
* The phase shift between Σ and ΔE determines the elevation of the target
* The phase shift between Σ and ΔA determines the azimuth of the target
* The IF center frequency of these signals is 140 MHz and the IF bandwidth is 40 MHz
* This signal processing requires three channels of A/D converters


Summary

The Pentek Model 71621 Transceiver XMC module is a complete radar signal generation, timing and acquisition subsystem. It has the three A/Ds required for monopulse radar and standard on-board support for signal generation and acquisition timing.

Radar data acquisition is facilitated by the 200 MHz, 16-bit A/Ds which capture the 140 MHz IF signals with 40 MHz bandwidth. Wideband DDC IP cores convert the IF signals down to baseband. The A/D input controller engine uses a simple parameter table that creates programmable delays, acquisition record lengths and complex acquisition scenarios.

Radar waveform generation uses a D/A controller engine with a simple parameter table. It creates multiple waveforms with programmable delays and lengths. The wideband DUC upconverts the digital baseband waveform to 140 MHz IF and the 400 MHz, 16-bit D/A delivers 140 MHz IF signal with 40 MHz bandwidth.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5205
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.11.10 01:53. Заголовок: http://www.analog.c..


http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf<\/u><\/a>

“This is a breakthrough device. It’s pushing the state of art,”
Jon Hall, ADI’s strategic marketing and applications manager for
high-speed converters, said in an interview. The performance and power
gains came thanks to a process shift rather than a process shrink.
---------------------------------------------------------

The device is fabricated on .18 silicon germanium BiCMOS,
#########################################################
where similar earlier devices were in CMOS.


http://www.eetimes.com/electronics-products/electronic-product-reviews/analog-products/4208854/Analog-Devices-offers-16-bit-ADC-at-250-MSPS<\/u><\/a>


Togda mozno predpolozit wozmoznost sodanija 18 bit 100 msps s
rasseiwaemoj moschnostju 10 watt i SFDR 107 db na Fin 70
mgz(standartnaja 2 pch w satcom)
################################


Product Review
Analog Devices offers 16-bit ADC at 250 MSPS
Brian Fuller
9/27/2010 6:57 PM EDT
Comment

Jon.Hall

10/21/2010 5:43 PM EDT
The latency of the AD9467 is determined by the actual pipeline
architecture. The ...


GREAT-Terry

10/11/2010 8:15 AM EDT
It is said to be a pipeline ADC. From the datasheet, the latency is 16
cycles. ...
More Comments >

Claiming a breakthrough in speed for the high-performance segment,
Analog Devices today announced the AD9647 16-bit A/D converter operating
at 250 MSPS (mega samples per second).

The device, intended to drive the company’s converter presence broader
and deeper into military, industrial and wireless applications, is said
to have a sampling rate that is 25 percent faster than competitive
devices. It uses 35 percent less power, at 1.32W total power dissipation
including drivers, than competing devices, the company claimed.

Key features:

* 1.8 V and 3.3 V supply operation
* 16-bit resolution with high signal bandwidths up to 300 MHz
* On-chip IF (intermediate frequency) sampling circuit and buffered
analog inputs
* High dynamic range over broad signal bandwidth enables
software-defined radios for use with multiple standards, such as
LTE/W-CDMA, MC-GSM (class 1) and CDMA.
* 75.5 dBFS SNR to 170 MHz at 250 MSPS @ 2.5 V p-p FS
* 74 dBFS SNR to 170 MHz at 250 MSPS @ 2.0 V p-p FS
* 90 dBFS SFDR to 300 MHz at 250 MSPS (@ −1 dBFS) at 2.5 V p-p FS
* 95 dBFS SFDR to 170 MHz at 250 MSPS (@ −1 dBFS) at 2.0 V p-p FS
* 100 dBFS SFDR at 100 MHz at 160 MSPS (@ −1 dBFS)
* 60 fs rms Jitter


“This is a breakthrough device. It’s pushing the state of art,”
Jon Hall, ADI’s strategic marketing and applications manager for
high-speed converters, said in an interview. The performance and power
gains came thanks to a process shift rather than a process shrink.

The device is fabricated on .18 silicon germanium BiCMOS, where similar
earlier devices were in CMOS.

http://www.eetimes.com/electronics-products/electronic-product-reviews/analog-products/4208854/Analog-Devices-offers-16-bit-ADC-at-250-MSPS<\/u><\/a>
--


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5214
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.11.10 19:12. Заголовок: http://www.analog.co..


http://www.analog.com/en/press-release/10_26_09_ADI_Expands_Low-Power_Data_Converter_Port/press.html<\/u><\/a>

Wisokoskorostnie 16 bit ADC s nizkoj potr .moschnsotju( 0.1 watta ) ...dlja nosimix radiostanzij
http://www.analog.com/en/press-release/10_26_09_ADI_Expands_Low-Power_Data_Converter_Port/press.html<\/u><\/a>
ANALOG DEVICES EXPANDS LOW-POWER DATA CONVERTER PORTFOLIO WITH 26 HIGH-SPEED ADCS
- New 16-bit, low-power, high-speed ADCs include three industry technology firsts in error correction, speed, and size.

Norwood, MA (10/26/2009) - Analog Devices, Inc. (NYSE: ADI), the global leader in data-conversion technology for signal processing applications, expanded its low-power data converter portfolio with 26 ADCs (analog-to-digital converters) for effective high-performance, power-efficient communications, portable device, instrumentation and healthcare applications.

The offering includes three data converter technology industry firsts for 16-bit ADCs:

ADI’s AD9269, the industry’s first 16-bit 80 MSPS low-power, dual ADC with quadrature-error correction (QEC)
ADI’s AD9265, the industry’s first single-channel, 16-bit low-power ADC spanning 80 to 125 MSPS (megasamples per second)
ADI’s AD9266, the industry’s smallest, single-channel 16-bit low-power ADC spanning 20 to 80 MSPS

These new ADC products provide designers a flexible, future-proof platform to differentiate their systems without changing the core design by migrating either resolution or bandwidth support by means of space efficient pin compatible families. In addition, the new ADCs’ energy efficiencies provide significant power consumption improvement without impacting system-level performance.

In addition to the AD9269, AD9265 and AD9266 flagship converters and their various speed grades, ADI introduced today 23 single-channel low-power ADCs, bringing the number of low power data converters ADI has brought to market in the last 180 days to 44*. The power consumption savings across these ADCs is as high as 87% compared to equivalent competitive offerings operating comparable ADC functions.

Industry First: Sub 100 mW/Channel, Low-Power, Dual-Channel ADC Spans 20 to 80 MSPS
The dual-channel AD9269 16-bit low-power ADC consumes 93 mW per channel, which is 6.5 times lower than competing devices. The AD9269 is a monolithic, dual-channel 16-bit, 20/40/65/80 MSPS ADC, featuring a high performance sample-and-hold circuit and on-chip voltage reference. It’s also the industry’s first 16-bit ADC family to include a QEC and DC offset digital processing block. These blocks dynamically minimize the errors produced in an in-phase/quadrature (I/Q) complex signal receiver system. By using the QEC block, system designers can relax component matching requirements by reducing gain and phase errors due to component mismatches. The net result can also enable a more robust receiver design. In addition, the DC-offset algorithm minimizes offsets commonly found in DC-coupled applications. The product uses multistage differential pipeline architecture with output error correction logic to provide 16-bit accuracy at 80-MSPS data rates and guarantees no missing codes over the full operating temperature range. The ADC operates from a 1.8-V supply and contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital-test-pattern generation. Samples are available now with production quantities available in January, 2010.

Industry First: Low-Power, Single-Channel 16-bit ADC Clocks at 125 MSPS
The single-channel AD9265 low-power, 16-bit ADC was designed to support communications applications requiring low bill-of-material costs, small size, and flexibility. Consuming only 370 mW, this breakthrough in power consumption represents a 51 percent savings compared to competitive low-power solutions. The ADC core features a multistage, differential pipelined architecture with integrated output error correction logic. The AD9265 features a wide bandwidth differential sample-and-hold analog input amplifier supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations. A duty cycle stabilizer provides means to compensate for variations in the ADC clock duty cycle, allowing the converters to maintain excellent performance. The ADC output data are either parallel 1.8 V CMOS or 1.8 V LVDS (DDR). Flexible power-down options allow significant power savings, when desired. Programming for setup and control are accomplished using a 3-bit SPI-compatible serial interface. Production quantities are available now.

Industry First: Smallest 16-bit Low-power, Single-channel ADC Spans 20 to 80 MSPS
The single-channel AD9266 16-bit, low-power ADC is available in a small 5 mm x 5 mm package, and the pin-out supports resolutions from 10 to 16 bits. The low-power, multistage ADC core is based on a proprietary, high-performance, sample-and-hold circuit and on-chip voltage reference. The product uses a differential-pipeline architecture with output-error-correction logic to provide 16-bit accuracy at 80 MSPS data rates and guarantees no missing codes over the full operating temperature range. The ADC contains several features designed to maximize flexibility and minimize system cost, such as programmable clock and data alignment and programmable digital test pattern generation. The available digital test patterns include built-in deterministic and pseudorandom patterns, along with custom user-defined test patterns entered via the SPI. A differential clock input controls all internal conversion cycles. An optional DCS compensates for wide variations in the clock duty cycle while maintaining excellent overall ADC performance. The digital output data are presented in offset binary, Gray code, or twos complement formats at double-data-rate low-voltage CMOS levels. A data output clock (DCO) is provided to ensure proper latch timing with receiving logic. Samples are available now with production quantities available in January, 2010.

Pricing, Tools and Complementary Products



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5215
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.11.10 21:03. Заголовок: primer SDR modifika..


primer SDR modifikazija wsr-88d- If /pch-57-62.5 mgz ,14 bit ADC /Lockheed -Martin 3 ghz radar s 9 metrow antennoj

http://www.qsl.net/n9zia/pdf/wsr-88d.pdf<\/u><\/a>
http://www.roc.noaa.gov/WSR88D/About.aspx<\/u><\/a>


There are 159 operational NEXRAD radar ...

Generic radar processor design using software defined radio
----------------------------------------------------------------
8B. 3 A GENERIC RADAR ... within the FPGA, a wide range of radar
intermediate ... down converter as well as any oversampling that takes
place within the radar ...

http://ams.confex.com/ams/pdfpapers/123642.pdf<\/u><\/a>



s IF 62.5 mgz ...

T.e. eto ne prjamaja konversija signal s antenni w ADC
-----------------------------------------------------------

PDF] Digital IF receiver - capabilities, tests and evaluation
Adobe PDF - View as html
... analog circuits to down convert the signal from intermediate ...
incorporation into the WSR-88D RRDA (Research Radar ... The oversampling
mode plot of the dynamic range measurement ...


http://ams.confex.com/ams/pdfpapers/64211.pdf<\/u><\/a>

kombinazija sampling i zifrowoj filtrazii -dinamicheskij diapazon 90 db
s 14 bit ADC ,kotorij imeet SFDR tolko 71 db


posle modifikazii na pdf linkax wische s 14 bit ADC

http://www.qsl.net/n9zia/pdf/wsr-88d.pdf<\/u><\/a>

Chastota 2.7 ghz -3 ghz
Nesuschaja pch -60 mgz
polosa -0.8 mgz
dinamicheskij diapazon -95 db

Na sxemax 2008 goda nize s 16 -bit ADC 105 db
-------------------------------------------------

http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf<\/u><\/a>
http://highfrequencyelectronics.com/Archives/Nov08/1108_Friedman.pdf<\/u><\/a>







Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5234
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 29.11.10 22:33. Заголовок: A great deal of the ..


A great deal of the technological groundwork for
this process was established during 1971. By 1972,
fabrication of the first reflective-array compressor
(RAC) was initiated; this device is illustrated in Figure
2. The first RAC device was a linear-FM filter
with a 50-MHz bandwidth (on a 200-MHz carrier)
matched to a 30-μsec-long waveform [16–18]. This
arrangement yielded a time-bandwidth product of
1500, more than an order of magnitude greater than
that achieved by interdigital-electrode SAW devices
[19]. The response was remarkably precise; the phase
deviation from an ideal linear-FM response was only
about 3° root mean square (rms). Pairs of matched
RACs were used in pulse-compression tests in which
the first device functioned as a pulse expander and the
second as a pulse compressor. The compressed
pulsewidths and sidelobe levels were near ideal.
Armed with these encouraging results, researchers
took the next step by developing RAC devices for specific
Lincoln Laboratory radars.

http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radarsignalprocessing.pdf<\/u><\/a>


FIGURE 2. A phase-compensated reflective-array compressor,
or RAC. The input transducer converts an electrical signal
into a surface acoustic wave (SAW) that propagates
along the surface of the crystal. The grating etched into the
crystal reflects the wave at a position determined by the input
frequency and the local spacing of the grooves in the
grating. High frequencies reflect close to the input transducer,
while low frequencies reflect at the far end of the grating.
A second reflection sends the SAW to the output transducer,
where it is converted back into an electrical signal.
The desired delay versus frequency is set by the geometry of
the device. Deviations from the desired response can be
trimmed out by a metal film of varying width deposited on
the device.


The wide bandwidth
yielded a range resolution that could resolve individual
scatterers on reentering warhead-like objects.
This waveform was normally processed with the
STRETCH technique, which is a clever time-bandwidth
exchange process developed by the Airborne
Instrument Laboratory [21, 22].

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5235
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 29.11.10 22:37. Заголовок: The ARPA-Lincoln C-b..


The ARPA-Lincoln C-band Observables Radar, or
ALCOR [20], on Roi-Namur, Kwajalein Atoll, Marshall
Islands, had a wideband (512 MHz) 10-μseclong
linear-FM transmitted-pulse waveform (see the
article entitled “Wideband Radar for Ballistic Missile
Defense and Range-Doppler Imaging of Satellites,”
by William W. Camp et al., in this issue)





The return signal is mixed with a linear-FM chirp and the low-frequency
sideband is Fourier transformed to yield range information.
For a variety of reasons, the output bandwidth
and consequently the range window were limited.
For example, the ALCOR STRETCH processor
yielded only a thirty-meter data window.
***********************************
Therefore,
examination of a number of reentry objects, or the
long ionized trails or wakes behind some objects, required
a sequence of transmissions.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5237
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.11.10 13:42. Заголовок: 16-битные АЦП-приемн..


16-битные АЦП-приемники на основе технологии SiP — без лицензии на импорт
Действующие экспортные ограничения в области высоких технологий, в том числе на быстродействующие АЦП, серьезно ограничивают российских производителей коммуникационного, измерительного и другого оборудования, в котором могут использоваться подобные АЦП. И хотя лицензию на поставки таких компонентов получить можно, ограничения все равно препятствуют широкому внедрению скоростных АЦП и не дают нашим разработчикам набрать опыт использования устройств такого класса, снижая конкурентоспособность отечественных разработок

http://www.russianelectronics.ru/leader-r/review/2190/doc/48505/<\/u><\/a>

1. Pochemu USA dolzni postawljat AZP potenzialnomu protiwniku neponjatno
2. Pochemu Rossija dolzna zawisit ot COCOM ,toze
Neobxodimo razrabotat swoi AZP ....

3 Opit est ,swoi AZP bili toze . W 1994 posle 3 preobrazownij chastoti 35 ghz/2000 mgz polosa MMW radar
ispolzowal 10 bit AZP s 20 msps na 2.5-7.5 mgz
------------------------------------------------------------


Toze primerno bilo w Don -2N

http://www.rti-mints.ru/pro.htm<\/u><\/a>

В РЛС реализована полностью цифровая обработка сигналов (ЦОС). Инициатором и организатором работ по внедрению ЦОС в РЛС ПРО “Дон-2Н” являлся ее главный конструктор.

За создание РЛС “Дон-2Н” ее главный конструктор В.К.Слока в 1996 г. удостоен высокого звания Героя Российской Федерации

Po publichnoj informazii
***********************
K sozaleniju razrabotkoj 16 bitnix AZP 200-300 msps weduschie rossijskie centri
**********************************************************************
NTZ Modul -
http://www.module.ru/<\/u><\/a>
FGUP Progress -
http://mri-progress.ru/<\/u><\/a>

sejtchas zanimatsja ne budut
***************************

Nesmotrja na nalichie y nix texnologii i processa 0.18 microna SiGE BiCMos ( AD9467 250 msps ,300 mgz
sdelan na etoj texnologii)

wozmoznie prichini -drugie idei ,celewoj rinok -meschanskaja massa ,
nabor reklamnix primitiwizmow -
-----------------------------------------
sistema na kristalle
SDR


1. Kniga chefa FGUP Progress
http://mri-progress.ru/?p=92<\/u><\/a>
Представляем вашему вниманию книгу серии “Мир электроники”, авторы Немудров В., Мартин Г. “Проектирование систем на кристалле”, издательство “Техносфера”, 2004 г.
В книге рассмотрены различные аспекты проектирования и развития нового класса перспективной электронной элементной базы – “систем на кристалле” (system-on-chip – SoC).


2. Interviju chefa NTZ Modul
http://www.electronics.ru/issue/2005/6/1<\/u><\/a>
За DSP Л1879ВМ1 последовала система на кристалле (СнК) 1879ВМ3 - чип смешанной обработки, включающий два канала АЦП с быстродействием 600 мегавыборок в секунду и четыре 8-разрядных ЦАП по 300 Мвыборок/с, встроенное ОЗУ (2 Мбит), управляющий контроллер с VLIW-архитектурой (128-разрядные команды) и развитой шинной структурой. Вскоре должен последовать новый DSP-процессор 1879ВМ2.


"Mochit w sortire" , "Prinuzdenie k miru" , "Informazionnie ydari" (nach.staba VKS), Nanotrubki , Sistema na kristalle

i tak dalee...

Maloverojatno ,chto dannie FGUP/kompanii zainteressowani razrabatiwat specializirowannij 16 -biz AZP dlya
VPK


http://www.youtube.com/watch?v=9cVqNT0grx8<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5238
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.12.10 16:21. Заголовок: adc . adc http://ww..


ADC

http://www.nu-trek.com/nu-trek/data-conversion.html/#Ultra%20Low%20Power%20ADCs<\/u><\/a>

Ultra Low Power Analog to Digital Converters (ADCs): Two ultra-low power
14-bit ADCs are under development. Power consumption is ~ 1/10 of
commercial parts that are presently on the market. ADCs target imager
applications.


odno iz primenenij ADC wische

http://www.nu-trek.com/nu-trek/rf-applications.html<\/u><\/a>

The device supports multichannel digital adaptive anti-jam signal
processors providing wideband cancellation in excess of 50 dB. When
combined with a GPS signal processor providing 70 dB A/J the RF ASIC
will support GPS tracking with 120 dB Jamm/Signal.
###################################################

The NTK-Ironman-01 is a complete dual-channel global positioning system
(GPS) front-end down converter. This low power CMOS IC integrates a
low-noise amplifier (LNA), image rejection mixer, automatic-gain-control
amplifier (AGC), secondary mixer, and clock buffer.


External IF, baseband filters, and ADCs enhance flexibility. The device
#######################################################################
supports C/A, P(Y), and M codes.
################################


Government sponsors have included the:

Missile Defense Agency (MDA)
U.S. Air Force
Department of Energy (DOE)
Defense Threat Reduction Agency (DTRA)
Defense Advanced Research Projects Agency (DARPA)
U.S. Navy
National Aeronautics and Space Administration (NASA)
Key industrial partners included:

Raytheon
Ball Aerospace
Honeywell
SAIC
Other Prime and 2nd Tier Defense Contractors

http://www.nu-trek.com/nu-trek/aboutus.html<\/u><\/a>


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5240
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 18:56. Заголовок: A Few Words About In..


A Few Words About Intermodulation Dynamic Range (IMDDR) and Roofing Filters

http://www.inrad.net/files/Pubs/About%20Roofing%20Filters.pdf<\/u><\/a>

The term “roofing” means that it protects the rest of the radio following it from out of the passband signals.
---------------------------------------------------------------------------------------------------------------------------


Modern radios are two basic designs: radios with only ham bands use a first IF in the HF region, typically between 4 and 10 MHz, or radios that have their first IF in the VHF region, well above 30 MHz. The latter are usually called “Up Conversion” radios. Let’s examine some of the advantages of each.
The Orion, K2, and Omni are like the first type. The Yaesu, Kenwood, and Icom radios are like the second.
The first IF in the Orion is in the HF region. These filters are easy to make and have been available for many years. In the up conversion radios, the first IF is at VHF, somewhere in the 40 to 75 MHz region.


-------------------
RADAR FPQ -6 Appolo programm IF -20 mgz ,polosa 1.6 mgz
Sputnik kommunikazii 1 IF 1-1.15 ghz ,2 IF -70 mgz ,polosa 4-5 mgz (Misltar/AEHF 8.192 mbps)
------------------------------------------------------------------------------------------------------------------

rezim naibolschej boewoj ystojchiwosti Milstar-2/AEHF -75 bit/sek(polosa 75 herz primerno)
############################################

The ability of a radio to ignore strong signals near the tuned frequency is greatly enhanced by a roofing filter
#######################################################################

. Ideally, the final desired selectivity should be in the first IF to protect the following high-gain stages from strong out-of-band signals.

At the lower IFs it is possible to use filters as narrow as 250 Hz.
###########################################


Roofing Filters and Dynamic Range
Following the antenna connection, most radios have an LC bandpass filter. This filter is usually as wide as an amateur band or even wider. So, the first mixer may have tens or hundreds of signals at its input while you are trying to separate out one signal for copy. The ability of the first mixer to handle these signals without excessive intermodulation is a function of its circuit design. It does have a limit, above which there is intermodulation that becomes stronger than the noise floor of the radio. The difference between these two levels is known as the dynamic range. This characteristic is generally measured with just two signals of the same strength and some particular frequency spacing. For two signals within the operating band, this is called the third-order dynamic range. When the signal spacing is much greater than the roofing filter bandwidth, the dynamic range of the radio is determined by the first mixer and any other early stages.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5241
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 19:37. Заголовок: http://www.electroni..


http://www.electronics.ru/pdf/6_2003/04.pdf<\/u><\/a>


opisanie na russkom


Подтверждением тому мо
жет служить появление в июле 2003 года на сайте фирмы информа
ции о создании нового, самого скоростного в мире 14разрядного
АЦП ТС1410 с рекордным быстродействием – предельная частота
дискретизации 240 МГц

Пока же частотные показатели нового АЦП выглядят более
скромно, хотя и занимают лидирующие в мире позиции.
######################################
В частно
сти, для сигнала на частоту 5 МГц отношение сигналшум при дис
кретизации с частотой 240 МГц достигает 71 дБ (полный коэффи
циент гармоник – 87 дБс), монохроматического сигнала частоты
181 МГц – 70 дБ (полный коэффициент гармоник – 74 дБс) (рис.4).



Yrowen 2003 goda ot Raytheon 14 bit 250 msps ,potr moschnsot 12-14 watt

Esli w Rossii takoj sposbni sdelat ,to xoroscho

Segodnjaschnij yrowen 250 msps ,16 bit 0.18 SiGE ,1.3 watta AD9467
#################################################

Eto open market(dlja wsex) .

W specializirowannom voennom variante verojatno mozno ywelichit potr moschnsot w 10 raz(w S-500
eto nekriticno potr AZP 1.3 watta ili 13 watt ,kritichna skorost , tochnost ,din.diapazon)
a chislo razrjadom do 18

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5242
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 20:01. Заголовок: Sowetskoe AZP osta..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5243
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 21:01. Заголовок: TC1410 TelASIC 14 b..


TC1410 TelASIC 14 bit ,240 msps 2003 god

Input bandwitch - bolee 1000 mgz
SNR -71.5 DB
THD -85 db (Vin menee 240 mgz)
SFDR -bolee 100 dbfs bez 2 i 3 harmoniki
apperturnaja pogr - menee 60 femtosek
max vx.signal 4 v(peak to peak)

output -LVDS
architecture -Multi-pass sub-ranging ,Integrated wideband sample & hold
http://w2.cadence.com/whitepapers/wireless_solutions_sandiego_010605.pdf<\/u><\/a>



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5244
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 21:18. Заголовок: http://rfdesign.com/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5247
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.12.10 21:47. Заголовок: http://www.esicomput..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5248
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.12.10 14:58. Заголовок: http://www.analog.co..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5249
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.12.10 17:04. Заголовок: http://focus.ti.com/..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5256
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.12.10 14:11. Заголовок: 12 bitnij ADC s SFD..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5257
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.12.10 15:34. Заголовок: Key Features: Colla..


Key Features:

Collaboration of Intersil and SP Devices
Demonstrates 4-way Interleaving of Intersil 500MSPS ISLA112P50s
Sample Rate: 2.0 GSPS
Resolution: 12 Bits
Interleave Correction Details
SP Devices’s ADX4 provides real-time, digital, FPGA based digital interleave correction of four ISLA112P50s
Performance
SNR = 65.5 dBfs @ Fin = 190MHz, a 6dB improvement over current best standalone 2GSPS ADCs
SFDR = 82 dBc @ Fin = 190MHz, a 13dB SFDR improvement over current best standalone 2GSPS ADCS
http://www.intersil.com/converters/ADC_ref_design.asp<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5258
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.12.10 16:02. Заголовок: http://www.datasheet..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5260
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.12.10 19:06. Заголовок: PLARB neuschaja ot..


PLARB neuschaja ot 3 kgz do 60 kgz , skorost 50 bit/sek (polosa 50 herz )
Milstar/AEHF rezim naiboschej boewoj ystojchiwsoti 75 bit/sec (polosa 50-100 herz)


24 bit ADC s 2.5-4 msps na chastotax do 500 kgz ( SDR dlja PLARB ili 3 IF dlja sputn/tropo) AD i TI

s SFDR do 120 db i SNR 112 db

http://www.analog.com/static/imported-files/data_sheets/AD7760.pdf<\/u><\/a>


http://focus.ti.com/pr/docs/preldetail.tsp?sectionId=594&prelId=sc09037<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5261
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.12.10 14:32. Заголовок: naschel -Rossijsk..


naschel -Rossijskij AZP ,bolee menee prilichnij 2 kanala po 14 bit


20 msps na 140 mgz ,SFDR -90 db

Области применения:
Микросхема 9008ВГ1Я предназначена для построения многоканальных систем ввода
аналоговых сигналов/изображений. Практическое применение возможно в таких областях,
как:
§ системы ввода изображения, в том числе системы тепловидения;
§ радиосвязь;
§ радиолокационные системы;
§ гидроакустические системы;
§ измерительная техника;
§ системы сбора данных;
§ системы управления;
§ системы промышленного контроля;
§ и в других устройствах, позволяющих принимать и обрабатывать отсчеты АЦП в
реальном времени.
9008ВГ1Я может быть использов

http://multicore.ru/index.php?id=678<\/u><\/a>

http://www.multicore.ru/mc/data_sheets/9008VG1YA_product%20brief_300709.pdf<\/u><\/a>

9008ВГ1Я может быть использован в качестве обычного двухканального АЦП, а также
замены AD9225, AD9235, AD9237, AD9238, AD9240, ADS850 (Analog Devices), LTC2246,
LTC2226 (Linear Technology).

Возможность объединения микросхем в группы для совместной работы на одной выходной шине данных - до 8 микросхем в составе двух групп;

Потребление не более 350 мВт;

Питание: цифровое: 2.5В ядро, 3.3В периферия; аналоговое: 3.0В; допустимое изменение напряжения +- 5%;

Диапазон рабочих температур от минус 60 до плюс 85 °C;

Корпус BGA-192, 17х17 мм, шаг 1 мм.
----------------------------------------------

prilichno ,sudja po partneram eto rossijkij AZP iz lutschix


http://multicore.ru/index.php?id=39<\/u><\/a>

Концерн ПВО "Алмаз-Антей"
Адрес: 121471, г. Москва, ул. Верейская, 41
Телефон: (495) 780 54 00
Факс: (495) 780 54 26
e-mail: antey@almaz-antey.ru
URL:
http://www.almaz-antey.ru<\/u><\/a>


ОАО "Концерн Радиостроения "ВЕГА"
Адрес:121170 Москва, Кутузовский проспект, 34
Телефон: (495) 249-07-04
факс: (495) 933-15-63, 148-79-96
e-mail: mail@vega.su
URL:
http://www.vega.su<\/u><\/a>


ФГУП "НПО Машиностроение"
Адрес: 143966, Московская область, г. Реутов, ул. Гагарина, д.33
Телефон: +7 (495) 508-87-33
Факс: +7 (495) 302 2001
e-mail: npomash@npomash.ru
URL:
http://www.npomash.ru<\/u><\/a>


ОАО "МНИИ "АГАТ"
Адрес: 140182, Россия, г. Жуковский - 2 Московской обл., ул. Туполева 2а
Телефон: (495)556-5087, 556-8110
Факс: (495)742-3587
e-mail: siagat@asvt.ru
URL: www.agat.rosprom.org


ФГУП "НПО "АГАТ"
Адрес: 105275 Москва, шоссе Энтузиастов, д.29/53
Телефон: (495) 273-4063
Факс: (495) 273-4130
e-mail: agat@grand-prix.ru






Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5262
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.12.10 14:56. Заголовок: sudja po anonsu 15 m..


sudja po anonsu 15 marta 2010 -eto iz novix

Отечественные 14-разрядные АЦП с частотой оцифровки 20 МГц

В ГУП НПЦ «ЭЛВИС» разработаны микросхемы двухканального аналого-цифрового контроллера ввода сигналов 9008ВГ1Я (макетные образцы имеют маркировку 2008ВГ1Я). Микросхемы выполнены в виде многокристального модуля и содержат два кристалла 14-разрядных АЦП конвейерного типа с частотой оцифровки до 20 МГц и цифровой контроллер. Кристаллы изготовлены по 0,25-мкм технологии и размещены в корпусе BGA-192 размером 17x17 мм. Диапазон рабочих температур микросхем — от –60 до +85 oC.

9008ВГ1Я предназначены для построения многоканальных систем ввода аналоговых сигналов и могут быть использованы в качестве замены AD9225, AD9240, ADS850 (Analog Devices) и LTC2246, LTC2226 (Linear Technology).

http://www.kit-e.ru/news/15_03_2010_1.php<\/u><\/a>

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5264
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.12.10 22:05. Заголовок: Clearspeed CSX700 ..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5265
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.12.10 23:52. Заголовок: Sandia News Releases..


Sandia News Releases
September 24, 2009

Sandia receives DoD ‘trusted foundry’ accreditation
ALBUQUERQUE, N.M. —Sandia National Laboratories’ silicon fabrication facility in Albuquerque, N.M., has been accredited by the Department of Defense (DoD) to provide “trusted foundry” services for both unclassified and classified integrated circuits. The foundry accreditation represents an increase in scope to Sandia’s already-existing accreditation for design services.

The accreditation program is part of DoD’s strategy to ensure that electronic components used in U.S. military and national security applications are trustworthy. Certification is necessary because the increasing offshore migration of all sectors of the microelectronics industry comes at a time of increasing demand for high-performance, application-specific integrated circuits (ASICs) from U.S. military and national security agencies.

Sandia’s Category 1A status, which requires the most stringent protection measures, was awarded through the Trusted IC Supplier Accreditation Program of the DoD’s Defense MicroElectronics Activity (DMEA).

The trusted foundry accreditation is for Sandia’s strategically radiation-hardened, 3.3-volt, 0.35-micrometer, SOI (Silicon-on-Insulator) CMOS
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
(a widely used type of semiconductor) process which produces custom low-volume, high reliability ASICs. Sandia’s silicon fab is optimized for radiation-hardened, analog and mixed-signal microelectronics, custom digital ASICs and discrete devices. Sandia uses 0.35-micrometer geometry to optimize performance for analog circuits resulting in better device matching, higher supply voltages and broader signal dynamic range than smaller geometry devices. Properly designed and fabricated, larger devices are more likely to continue to perform in extended operating environments of temperature fluctuations, shock and radiation.

In support of its primary mission as steward of the U.S. nuclear stockpile, Sandia has developed and delivered microelectronic products for nearly three decades. This expertise has also been applied to other national security needs. These include ensuring the nonproliferation of nuclear weapons and materials, reducing the threat from chemical and biological weapons, and providing advanced custom designs for other agencies involved in national defense. Sandia’s ASIC development team provides custom microelectronic products and engineering services that fulfill the needs of a diverse set of customers.

Sandia focuses on high-reliability custom solutions for high-consequence applications. An efficient and disciplined ISO 9001 certified process enhances chances for silicon solutions successful on a first pass-through. Sandia offers a total supply-chain solution for radiation-hardened integrated circuits and microsystems by combining trusted ASIC design and fabrication with other in-house capabilities in packaging, test, failure analysis and reliability.

For further information or questions, visit www.sandia.gov/mstc/ or email Trusted_ASIC@sandia.gov.


--------------------------------------------------------------------------------
Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media relations contact: Neal Singer, nsinger@sandia.gov (505) 845-7078


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5411
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 18.12.10 23:45. Заголовок: obzornie tablizi -ws..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5832
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.03.11 16:08. Заголовок: Borisova xoroscho zn..


Borisova xoroscho znajut w NTZ Modul FGUP Progress i Elvees .

Wse perechislennie zanjati razrabotkoj AZP
################################




http://www.armstrade.org/includes/periodics/news/2011/0305/18007421/detail.shtml
Юрий Борисов назначен первым заместителем председателя Военно-промышленной комиссии
ЦАМТО, 5 марта. Премьер-министр РФ Владимир Путин распоряжением №353-р от 3 марта 2011 года назначил первым заместителем председателя Военно-промышленной комиссии при правительстве РФ Юрия Борисова, освободив его от должности замминистра промышленности и торговли.

Борисов Юрий Иванович родился 31 декабря 1956 года в г. Вышний Волочек Калининской области.

Выпускник Калининского суворовского военного училища 1974 года.

Окончил Пушкинское высшее командное училище радиоэлектроники ПВО в 1978 году и Московский государственный университет им. М.В.Ломоносова в 1985 году. Доктор технических наук.

1974-1978 гг. - курсант Пушкинского высшего командного училища радиоэлектроники ПВО.

1978-1998 гг. - служба на офицерских должностях в Вооруженных силах СССР, Российской Федерации.

1998-2004 гг. - генеральный директор ЗАО Научно-технического центра «Модуль».

С июля 2004 г. по октябрь 2007 г. - начальник Управления радиоэлектронной промышленности и систем управления Федерального агентства по промышленности.

С 19 октября 2007 г. - заместитель руководителя Федерального агентства по промышленности.

2 июля 2008 года распоряжением правительства Российской Федерации № 960-р был назначен заместителем министра промышленности и торговли РФ.

Награжден Орденом «За службу Родине в Вооруженных Силах СССР» III степени и медалями.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5846
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 10.03.11 19:14. Заголовок: Intersil Introduces ..


Intersil Introduces New High-Speed ADC Family Offering Best-in-Class Performance and Power
Tuesday February 15, 2011 - 12:00 PM EST [BR]http://finance.denverpost.com/mng-denver.denverpost/news/read?GUID=17211227<\/u><\/a>

Marketwire News Releases
Released By Intersil
Includes 12-, 14-, and 16-Bit, 130 to 500 MSPS and Industry's Fastest 14-Bit ADC


MILPITAS, CA -- (Marketwire) -- 02/15/11 -- Intersil Corporation (NASDAQ: ISIL) today announced its newest family of analog-to-digital converters (ADCs). Simplifying system design and speeding time-to-market, the new family offers pin-compatible 12-, 14- and 16-bit ADCs with sample rates from 130 to 500 megasamples per second (MSPS). The entire family provides unparalleled performance and offers a significant reduction in power consumption over competitive devices, consuming as little as one-third the power. Power amplifier linearization, radar and satellite antenna array processing, broadband communications, high-performance data
######################################################################################
acquisition and communication test equipment are ideal applications that benefit from the industry-leading performance and low power consumption.

The first device to be introduced is the ISLA214P50, a 14-bit, 500MSPS ADC that consumes 63% less power while sampling at a rate 25% higher than any other 14-bit ADC.
###########################
The ISLA214P50 was designed using Intersil's proprietary FemtoCharge™ technology and operates from a 1.8V power supply. The new converter's ultra-high sample rate and resolution improve sensitivity and accuracy, while the decrease in power consumption allows simplified thermal and power system design. The new ADC also combines breakthrough performance with extensive configurability, making it one of the most flexible and easy-to-use ADCs on the market. At a sample rate of 500MSPS, the ISLA214P50 features a signal-to-noise ratio (SNR) of 72.7dBFS with spurious free dynamic range (SFDR) of 84dBc for fIN = 30MHz (-1dBFS).

The ISLA214P50 was recently selected by Spectrum Signal Processing By Vecima, a leading provider of high-performance, software-reconfigurable signal processing platforms, for use in their RF-4902 Wideband Frequency-Agile RF Transceiver. "We selected the ISLA214P50 because its combination of low power, high sample rate and excellent dynamic range enabled our RF-4902 to offer the most advanced platform for fielding SDR, SIGINT, and MILCOM applications," said Tudor Davies, Director of Technology at Spectrum.

Because the ISLA214P50 consumes only 835mW of power, it can be used in systems that cannot tolerate the bulky heat sinks and fans that are needed to cool competitive devices.
################################

A serial peripheral interface (SPI) port provides access to the ADC's extensive feature set, such as power-management functions, output test pattern generation and output code format selection. Digital output data is presented in selectable LVDS or CMOS modes.

The ISLA214P50 uses two time-interleaved 250MSPS ADCs to achieve the resulting 500MSPS sampling rate.
#######################################################################

T.e. bez interleaving lutschij 14 bit TI


A single 500MHz conversion clock is presented to the converter, and all interleave clocking and correction is managed internally. The proprietary Intersil interleave engine optimizes performance using automatic fine correction of offset, gain and sample time mismatches between the unit ADCs. The combination of FemtoCharge™ and I2E technology results in the industry's most power-efficient architecture for achieving extremely high sample rates without sacrificing dynamic performance.

Other members of the family will include single and dual 12-, 14-bit, and 16-bit ADCs, offering unparalleled dynamic performance and ultra-low power consumption. All single channel devices have been designed to be pin-compatible to facilitate design reuse and significantly reduce time-to-market. Similarly, all dual channel devices are pin-compatible. All devices will be available in space-efficient 10x10mm, 72-pin QFN packages. For area-constrained PCBs, a subset will be offered in a 7x7mm, 48-pin QFN package, reducing the already small footprint by an additional 51%. All family members include the ability to synchronize multiple ADCs, which, when combined with exceptional low power consumption and small physical size, make them ideal for multi-channel, highly parallel systems.

Flexible Evaluation System Ready
Intersil is also making available a flexible evaluation system, developed to enable designers to analyze performance in both time and frequency domains. The system features a modular design with one motherboard that supports multiple ADC families. Matlab code is available for hardware-in-the-loop analysis and can capture greater than 1 Megasample in a single, contiguous stream. Users can download captured data to standard CSV files to apply specialized post processing.

Pricing and Availability
The ISLA214P50 is available in a 72-pin QFN package with an exposed paddle. Pricing starts at $185 each in 1,000-piece quantities.
#################################################################################
Evaluation kits for the ISLA214P50, including complete support from Intersil, are available for $300 each. Samples for this new ADC family are available now, with full production planned for early 2011. For more information, please visit [BR]
http://www.intersil.com/converters/NewADCs/Fastest14.asp.<\/u><\/a>

Key Highlights

* Compact, single-width, 3U high form-factor
* 200 MHz to 2.7 GHz frequency coverage
* Operable for applications requiring up to 195 MHz receive, 400 MHz transmit analog bandwidth
* Ultra-low “microsecond” settling time for demanding frequency-hopping applications
* Full-duplex transceiver capability for TDD and FDD waveforms
* On-board user programmable Virtex-5 SXT FPGA
* Intersil ISLA214P50 14-bit ADC and Analog Devices AD9122 16-bit DAC
* Digital IF/baseband output via high-speed serial interface
* Supports synchronous operation across multiple modules for MIMO applications
* Available in air-cooled or conduction cooled formats for use in harsh environments
* Software API library, and reference software examples are available

The RF-4902 can be used with Spectrum’s SDR-4000 Software Defined Radio (SDR) platform or for stand-alone use for integration into your own system.

» Contact Spectrum Sales for more information.




Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 5847
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 10.03.11 19:19. Заголовок: http://www.intersil...

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6331
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 15.04.11 18:58. Заголовок: 18 апреля 2011 г. Го..


18 апреля 2011 г. Государственная Дума

НАЧАЛО: 11.00 Малый зал.


Комитет по промышленности проводит «парламентские слушания», посвященные наиболее острым и важным вопросам законодательного обеспечения развития электронной промышленности в России.

Председатель Комитета Государственной Думы по промышленности, депутат фракции КПРФ С.В. Собко сформулировал задачу предстоящих парламентских слушаний следующим образом: «Сегодня надо говорить откровенно, отставание России в развитии элементной базы становится критическим. Это не просто экономическая проблема, это проблема национальной безопасности. Наши ракеты летают на микросхемах, купленных на Митинском рынке. Промышленная модернизация невозможна без создания собственной элементной базы. В плане законотворческой работы здесь огромное поле для деятельности».

По итогам парламентских слушаний будут приняты рекомендации, которые содержат комплекс законодательных инициатив и предложений для органов федеральной исполнительной власти.

Тел. для справок: 692-40-90

http://kprf.ru/announcements/90392.html

...

?

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6332
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 15.04.11 19:23. Заголовок: ? Religioznij dep..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6644
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 27.05.11 12:27. Заголовок: http://www.intersil...


http://www.intersil.com/data/fn/fn7574.pdf

16-Bit, 250MSPS/200MSPS/130MSPS ADC

• 75fs Clock Jitter
• 700MHz Bandwidth

Applications
• Radar Array Processing
• Software Defined Radios
• Broadband Communications
• High-Performance Data Acquisition
• Communications Test Equipment


Functional Description
The ISLA216P25 is based upon a 16-bit, 250MSPS A/D converter
core that utilizes a pipelined successive approximation
architecture (Figure 18). The input voltage is captured by a
Sample-Hold Amplifier (SHA) and converted to a unit of charge.
Proprietary charge-domain techniques are used to successively
compare the input to a series of reference charges. Decisions
made during the successive approximation operations determine
the digital code for each input value. Digital error correction is also
applied, resulting in a total latency of 10 clock cycles. This is
evident to the user as a latency between the start of a conversion
and the data being available on the digital outputs.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6690
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.06.11 16:16. Заголовок: DARPA/Lincoln labora..


Predwaritelnaya ocenka awtora - silami NTZ Module ,FGUP PRogress ,Elvees
pri nalichii zelanija S.Ivanova ,J.Borisova

chto-to podobnoe wozmozno i neobxodimo razrabotat ...
###################################

Dlja sprawki PCH Misltar 7.4 ghz i 70 mgz

http://www.mitre.org/work/tech_papers/tech_papers_99/airborne_demo/airborne_demo.pdf

Sowremennie 16 bit AZP dajut wozmoznost podnjat 2 PCH
do 250 mgz (polosa signala do 80-100 mgz)



DARPA/Lincoln laboratory NLEQ


http://www.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf

#########################################################

Copy from answer of patentholder
#######################


Hello ...(milstar)


...Your questions are definitely relevant to the work we do at GMR.


Regarding question 1.
The increase in dynamic range is very much dependent on the ADC type and indeed the full RF front end. Our techniques increase the dynamic range for ADCs and/or the entire RF front-end including the ADC. For example in systems where the receiver amplifier (typically a low noise amplifier) is a dominant factor in the linearity we can fix those nonlinearities as well. In addition, we correct for other distortions that are not harmonic in nature. For example, many systems use digitization methods that in effect use interleaving of 2, 4 or more ADCs in parallel thus achieving high sampling rates and high linearity. Unfortunately the interleaving itself is a source of errors that limits the overall dynamic range . GMR's iNLEQ techniques overcome those types of errors.


The specific ADCs you reference (assuming they are working on their own and not interleaved with others per the iNLEQ discussion above) will typically have improvements in dynamic range of about a) 12dB, b) 18dB, and c) 18 dB, respectively. Please note further that while these ADCs appear from the outside to be a single component they are, in fact, internally composed of multiple sampler sub-devices and therefore we use our iNLEQ interleaving error mitigation techniques as well.


Regarding question 2.
We certainly use our techniques in addition to other forms of error mitigation. We would need to discuss specifics for me to give you a more definitive answer about how best to make this work for any specific system. We typically collaborate with other companies or organizations to achieve the most cost effective solutions for them.


Please let me know if I can be of further assistance.


Best regards,
Gil Raz
GMR Research & Technology, Inc.





----------------------------------

Gentlemen

Author of this e-mail have some questions about NLEQ processor
perspective . Excuse the author ,if questions are not relevant


Relevant answer would appreciated


1. How great can be dynamic rang extension with NLEQ processor
and new ADC

a. ADC9467 16 bit/250 msps
b. EV10AS150 10 bit/2.5 gsps
c. ADC12D1800 - 12-Bit, Single 3.6 GSPS ADC

2. Is possible combination of NLEQ with another method*s

http://highfrequencyelectronics.com/Archives/Nov08/1108_Friedman.pdf

http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf

A Wide Dynamic Range
Playback System for
Radar Signals

X-Band Receiver
The MITEQ X-Band receiver is of a dual
conversion superheterodyne architecture that
translates a 10 GHz signal with a bandwidth
of 1 GHz to an IF center frequency of 70 MHz
and a bandwidth of 20 MHz for stretch processing
of radar returns. The receiver also
includes a wideband IF output at 1 GHz for
use with advanced high speed ADC (analog to
digital converter) processing techniques such
as optical processing, time sequenced ADC
arrays, or time stretched ADC arrays


http://highfrequencyelectronics.com/Archives/May08/HFE0508_Cannata.pdf


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6797
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 16.06.11 18:05. Заголовок: http://www.rosrep.ru..


http://www.rosrep.ru/news/index.php?ELEMENT_ID=5139&SECTION_ID=16


Компания "Ангстрем" и китайский производитель подписали соглашение о совместном производстве телекоммуникационного оборудования
Компания "Ангстрем" и китайский производитель Huawei подписали соглашение о совместном производстве телекоммуникационного оборудования, в том числе для строительства сетей LTE.
#######################################
Производство будет развернуто на мощностях "Ангстрема" в Зеленограде, его запуск запланирован на IV квартал 2011 г. В перспективе российская компания собирается выпустить линейку оборудования под собственным брендом. До тех пор пока в России не будет решен вопрос о выделении частот под сети четвертого поколения, потенциальным рынком сбыта могут стать страны СНГ.
#######################################################################

В рамках соглашения, которое компании подписали вчера, "Ангстрем" будет производить телекоммуникационное оборудование под маркой Huawei на собственной производственной базе в подмосковном Зеленограде. Кроме того, компании будут совместно разрабатывать технологические решения. Начать производство планируется в IV квартале 2011 г., его проектная мощность составит до 10 тыс. изделий в год.
###############################################################################################


W mire 2.2 mln bazowix stanzij wsex modifikazij
W Rossii 110 000 bazowix stanzij

Stoimost bazowoj stanzii LTE bez ystanowki - primerno 27 000 $

Esli w nix budut ispolzowatsja rossijskie GaAS/GaN i rossijskie AZP
############################################

to S.Ivenovu yawnij +


В рамках проекта в 2011 г. "Ангстрем" инвестирует в технологическую базу 400 млн руб. Со своей стороны Huawei предоставит разработки и технологии, подготовит специалистов "Ангстрема" и установит систему контроля качества продукции. Производство и продажу полностью возьмет на себя "Ангстрем", Huawei, в свою очередь, получит лицензионные отчисления.

На первом этапе "Ангстрем" будет производить базовые станции LTE, оборудование DWDM (OSN6800 и OSN1800), оборудование доступа (MA5600T и МА5603Т), IP-switch (S2300 и S3300 + S5300), оборудование РРЛ (серия RTN) и операторские маршрутизаторы (серии NE40/NE80/NEx).
##############

Как рассказал на пресс-конференции президент НПО "Ангстрем" Алексей Таболкин, в дальнейшем компания планирует наладить производство собственной продукции. "Сейчас мы работаем над созданием линейки оборудования под собственным брендом, - сказал он. - Первый этап сотрудничества - это локализация производства". К 2013 г. в Зеленограде будут открыты дополнительные производственные мощности.
########################################################################################

Пока же, по словам Алексея Таболкина, компания проводит маркетинговую работу и изучает рынки сбыта. "Мы планируем в процессе усложнения локализации постепенно менять в собираемом оборудовании импортную микроэлектронику на российскую.
#################################################################################

И начнем с интеграции в оборудование Huawei однокристального микропроцессора с функцией навигации ГЛОНАСС/GPS, разработанного на "Ангстреме", - говорит он.

Huawei, в свою очередь, заинтересован в расширении партнерства с российскими производителями. По словам первого заместителя главы российского представительства компании Александра Богданова, Huawei ведет переговоры и с другими компаниями и в дальнейшем рассчитывает иметь несколько партнеров. Пока же китайский производитель ожидает, что сотрудничество с "Ангстремом" позволит ему увеличить свое присутствие на российском рынке.

Компании рассчитывают, что в 2013 г. объем продаж оборудования совместного производства составит около 1 млрд руб. в год.
#######################################################################################
Для начала потенциальным рынком сбыта станет Россия, а в дальнейшем - страны СНГ, сказал Алексей Таболкин. "Пока объем производства не такой большой, чтобы осваивать другие рынки", - считает он.

Аналогичное партнерство российского производителя и иностранной компании реализуется в Томской области. Как ранее сообщал ComNews, в марте 2011 г. Nokia Siemens Networks, компания "Микран", администрация Томской области и корпорация "Роснано" подписали соглашение о создании производства оборудования для сетей LTE.
#####################################
Mikran izgotowitel GaAS dlja AFAR MiG-35
Его запуск в Томске запланирован на IV квартал этого года, серийный выпуск будет налажен к 2012 г. Первоначальный объем выпускаемой продукции составит около 10 тыс. базовых станций в год (см. новость на ComNews от 15 марта 2011 г.).
##########################################################################

Начало продаж ожидается в IV квартале 2011 г., однако проблема с выделением частот под строительство сетей LTE в России пока не решена. На вопрос о целесообразности таких сроков председатель совета директоров "Ангстрема" Леонид Рейман сказал, что главная цель проекта - организовать производство телекоммуникационного оборудования нового типа, а также провести совместные исследования и разработки. "Производство прежде всего нацелено на Россию, но сети LTE уже есть в других странах СНГ", - сказал он.

Между тем операторы "большой тройки" уже развернули тестовые сети LTE в странах СНГ: МТС - в столице Армении Ереване и в столице Узбекистана Ташкенте, а "ВымпелКом" - в двух столицах Казахстана, Алма-Ате и Астане. Правда, проработали сети в Казахстане недолго, и пока оператор ведет переговоры с регулятором о полноценном запуске. Поставщиком оборудования для проекта "ВымпелКома" в Казахстане выступила компания Alcatel-Lucent. "Партнеры сами обратились к нам с предложением совместно развернуть сеть четвертого поколения, и их оперативность оказалась решающим фактором для начала сотрудничества", - сказал репортеру ComNews руководитель департамента по связям с общественностью в СНГ компании "ВымпелКом" Артем Минаев. По его словам, важным фактором при выборе партнера стал опыт в реализации аналогичных проектов. Например, у Alcatel-Lucent совместно с Verizon запущена сеть LTE в 700-м диапазоне в США. В начале 2011 г. сеть в Алма-Ате была отключена по окончании действия лицензии. "Окончательного решения по LTE нет, но мы ведем совместную работу с регулятором на тему развития в республике сетей связи четвертого поколения", - пояснил ситуацию Артем Минаев.

"ComNews"

9 июня 2011 года



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6802
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 16.06.11 18:40. Заголовок: Executive Summary &..



Executive Summary
 Like they did last year, Ericsson and Huawei share the top spot in the LTE ranking.
 The LTE infrastructure market is forecast to grow from approximately $2.5 billion USD in
2011 to $13 billion USD by 2016.
###########################################################

 As operators increase their levels of infrastructure investment, all the vendors have
reported improved financial performance in 2010 and early 2011. The LTE vendor set is
therefore unlikely to be reduced further in the short term, despite previous consolidation
trends.
 The WiMAX vendor set continued to shrink in 2011 as WiMAX loses momentum and is
increasingly regarded as legacy technology by operators. Further reductions of the
WiMAX vendor set are possible.
 All major RAN vendors have introduced distributed base stations using centralized
baseband processing – so-called baseband farms. These types of deployments are
increasingly being adopted by operators. Operators may find that having invested in a
baseband farm, they are locked-in to that vendor. Competitors may find that once another
vendor deploys a baseband farm, access to that area has been effectively blocked.
 Early LTE deployments are concentrated among a handful of operators, notably Verizon.
This has benefitted Ericsson and Alcatel Lucent above all, who are the only vendors that
have deployed commercial-scale networks, giving them a head start in maturing their
LTE technology.
 Huawei and NSN are positioned for future growth due to the large number of LTE
contracts they have been awarded. Maravedis notes that many of these contracts are for
small trial networks, and do not guarantee future deployments.
 Huawei has succeeded in penetrating the technologically demanding Western Europe
market and has rolled out some of the larger LTE networks. We expect them to become
the largest network vendor in the near future.
 The market for LTE small cells has not yet materialized, in part because vendors don’t
have products ready to go to market. Maravedis expects LTE small cell deployments to
begin in 2012, with increasing volume in 2013 and 2014.
 3G Leapfrogging is not yet a phenomenon in the wireless industry. Maravedis has
identified that 21 out of 25 top LTE operators, or 84%, will be moving from HSPA to
HSPA+ prior to their evolution to LTE.
 All vendors are pushing into cloud computing and service delivery. They are becoming
increasingly sophisticated solution providers deriving a growing portion of their income
from services – installation, engineering, and network operations.
 The more sophisticated LTE Vendors are working to develop capabilities in their mobile
network solutions to drive ARPU, particularly in video services.

http://www.maravedis-bwa.com/assets/media/pdf/Brochures/brochure%204GgearQR_June2011%20RAN%20Trends.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 6808
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 16.06.11 23:12. Заголовок: Hittite's High S..


Hittite's High Speed ADCs Target Digital Storage Oscilloscopes
June 3, 2011



Hittite Microwave Corporation, the world class supplier of complete MMIC based solutions for communication & military markets, has introduced three new ADCs that are ideal for Digital Storage Oscilloscopes (DSOs). The combination of low power and 1 GSPS sample rate yields the industry's first ADC solution for 1 GSPS USB powered Oscilloscopes.

The HMCAD1520, HMCAD1511 and HMCAD1510 feature integrated functions which are ideal for DSO applications. Integrated crosspoint switches allow switching between quad, dual and single channel modes, while integrated 1 to 8 x clock dividers keep the input clock frequency constant when the number of channels is changed.

The HMCAD1511 features 8-bit resolution at 1 GSPS sample rate. A 13-bit internal resolution allows up to 32 x (30 dB) of digital gain without missing codes, allowing the user to replace analog gain circuitry with digital gain settings. At 1 GSPS and 710 mW, the HMCAD1511 consumes the industry's lowest power, enabling the implementation of USB powered oscilloscopes up to 1 GSPS.

By interleaving 2 or 4 HMCAD1511 ADCs, overall sample rates of 2 or 4 GSPS can be achieved respectively. The low size and power of HMCAD1511 make it an excellent building block for Oscilloscopes up to 4 GSPS.

The HMCAD1520 provides up to 12-bit resolution at up to 640 MSPS, making it ideal for precision DSOs. The HMCAD1511 is available as an operational mode for the HMCAD1520, allowing combined 12-bit and 8-bit implementations. The HMCAD1510 features 8-bit resolution up 500 MSPS. The device consumes the lowest power in the industry at 295 mW, making it an ideal choice for high performance handheld battery powered oscilloscopes.

All three ADCs can be evaluated with the Hittite EasySuite evaluation kits, EKIT01-AD1520, EKIT-AD1511 and EKIT-AD1510.The evaluation kits are based on Xilinx FMC (FPGA Mezzanine Card) SP601 standard motherboards, and feature Hittite evaluation boards with on-board ADCs connected to the Xilinx board through an FMC connector. Hittite's pre-loaded EasyStack firmware performs FPGA processing, while the EasySuite PC software tool performs ADC configuration, data capture and performance analysis.

The HMCAD1520, HMCAD1511 and HMCAD1510 ADCs are housed in 7 x 7 mm plastic leadless surface mount packages.Samples and Evaluation Kits are available from stock and can be ordered via the company's e-commerce site or via direct purchase order. For more information, visit www.hittite.com.

About Hittite Microwave Corporatio
Hittite Microwave Corporation is an innovative designer and manufacturer of high performance integrated circuits, or ICs, modules, subsystems and instrumentation for technically demanding digital, RF, microwave and millimeterwave applications covering DC to 110 GHz. The Company's standard and custom products apply analog, digital and mixed-signal semiconductor technologies, which are used in a wide variety of wireless / wired communication and sensor applications for Automotive, Broadband, Cellular Infrastructure, Fiber Optics & Networking, Microwave & Millimeterwave Communications, Military, Test & Measurement, and Space markets. The Company is headquartered in Chelmsford, Massachusetts.

SOURCE: Hittite Microwave Corporation


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7195
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 23.08.11 16:46. Заголовок: Dannie po zifrowoj o..


Dannie po zifrowoj obrabotke signala 1000 mgz za 1998 god

3.1.2 Radar Data Collection
X-Band radar data are collected with Haystack in a staring mode. Four channels are processed in the
radar: PP sum, OP sum, PP traverse difference, and PP elevation difference. Data from all four channels
are coherently converted to a 60-MHz intermediate frequency, filtered to 1-MHz bandpass, further downconverted
to 5 ± 0.5 MHz, and then digitized at a rate of 20 MHz using a 10-bit digitizer. In-phase (I)
and quadrature (Q) data are created at a 5-MHz sample rate, and then thinned without averaging to a
1-MHz rate. Using about a 40% range overlap, the I and Q samples are fast Fourier transformed (FFT) to
the frequency domain. Complex FFT data for each channel are sent to a memory buffer containing data
for the previous 12 to 20 pulses. To minimize the archiving of data with no detections, a noncoherent
12-pulse running sum of the PP sum channel data is maintained, and only when a threshold is exceeded
are the spectral data for all four channels permanently recorded to tape. The recording threshold is
intentionally set lower than allowed in subsequent processing to ensure that no usable data are missed.

http://ston.jsc.nasa.gov/collections/TRS/_techrep/TM-1998-4809.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7246
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.08.11 19:20. Заголовок: Hittite’s 18 GHz Ult..


Hittite’s 18 GHz Ultra Wideband Track-and-Hold Amplifier Enhances High Speed ADC Performance
By Hittite Microwave

Wideband data acquisition systems with multi-GHz bandwidth are needed for a variety of applications such as software defined radio, radar systems, Electronic Warfare (EW) / Electronic Intelligence (ELINT) and test and measurement equipment. Ideally, system designers would like to be able to connect the signal source (for example an antenna) directly to a wideband, high dynamic range Analog-to-Digital Converter (ADC) for digitization.
http://www.mpdigest.com/issue/Articles/2011/apr/hittite/Default.asp


Although several high speed ADCs offer enhanced sample rates, few of them offer input bandwidth beyond a few GHz. In addition, maintenance of good sampling linearity at frequencies above the UHF band is technologically challenging and most current ADCs suffer rapidly degrading linearity above 1 or 2 GHz signal frequency. These limitations result from the Track-and-Hold Amplifier (THA) which sample the input signal at a precise time instant and holds the value of the sample constant during the analog-to-digital conversion. This THA (integrated into the ADC) is often not optimized for ultra wideband operation. These limitations can be overcome by using Hittite’s HMC5640BLC4B Ultra Wideband Track-and-Hold Amplifier, which is designed for use in microwave data conversion applications requiring maximum sampling rate, low noise and high linearity over a wide bandwidth.

The HMC5640BLC4B, which offers 18 GHz input bandwidth and excellent broadband linearity, is used as an external master sampler at the front end of an ADC


The THA maintains excellent linearity over a very broad bandwidth with 56 dB or better Spurious Free Dynamic Range (SFDR) from DC to beyond 5 GHz at full scale input. Users may perform post conversion processing to reduce the wideband noise floor and may choose to tradeoff input signal level for higher linearity. A reduction of input level to half full scale results in 10-bit or better linearity across a wide bandwidth (Table 1)

Performance of the HMC5640BLC4B Track-and-Hold with a Commercially Available 1.6 GS/s, 12-Bit Dual ADC
######################################################################

As shown in Figure 3, the 18 GHz bandwidth HMC5640BLC4B radically enhances the sampling bandwidth well beyond the intrinsic 2.8 GHz ADC bandwidth.
/predpolozitelno ADC -dual 12 bit National -smotri dannie nize /
--------------------------------------------------------------------------


Comparison of the SFDR curves shows that the HMC5640BLC4B not only enhances the SFDR beyond the bandwidth of the ADC but also enhances it for frequencies within the 2.8 GHz ADC bandwidth by up to 11 dB.


##############################


National Semiconductor Introduces Industry’s Fastest
12-bit ADC

Combination of 12-bit Resolution and 3.6-GSPS Sampling Rate Enables New Applications for Wideband Software-Defined Radios

May 24, 2010 – National Semiconductor Corp. (NYSE:NSM) today introduced the Industry’s fastest 12-bit analog-to-digital converter (ADC). At 3.6 Giga-samples per second (GSPS), the ADC12D1800 is 3.6 times faster than any other available 12-bit device. The ADC’s dynamic performance of -147 dBm/Hz noise floor, 52 dB noise power ratio (NPR) and -61 dBFS intermodulation distortion (IMD) enables a new generation of software-defined radio (SDR) architectures and applications.

In addition to the ADC12D1800, National introduced two other members of its ultra high-speed ADC family: the ADC12D1600 with sampling speed up to 3.2 GSPS and the ADC12D1000 with performance up to 2.0 GSPS. All three PowerWise® ADCs target wideband SDRs including radar, communications, multi-channel set-top box (STB), signal intelligence, and light detecting and ranging (LIDAR) applications
https://www.national.com/news/item/0,1735,1459,00.html

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7492
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.12.11 17:11. Заголовок: TI Bolsters Ultra-lo..


TI Bolsters Ultra-low Power, High Speed ADC Family
Mon. July 25, 2011

Source: Texas Instruments Inc.

Texas Instruments Inc. expanded its line of high speed, ultra-low power consumption analog-to-digital converters (ADCs) with eight dual-channel devices available in 12- and 14-bit resolutions at speeds from 65 to 250 MSPS. With these additions, the ADS42xx family provides the performance and bandwidth needed for 3G/LTE wireless base stations, portable test and measurement and software defined radio applications, while providing best-in-class power consumption.

Key features and benefits of the ADS42xx family:

• The 14-bit ADS4246 uses 332 mW total power at 160 MSPS, 35-percent less power than its closest competitor. The family provides options down to 92 mW per channel to reduce board heating and operating costs.

• Pin-compatible 12- and 14-bit options, with speeds ranging from 65 to 250 MSPS, enable customers to move to higher resolutions and sample rates without redesigning the board.

• Pin-compatible with 11-bit, 200-MSPS ADS58C28, providing a license-free export option with up to 65 MHz of high-performance RF channel bandwidth at input frequencies over 200 MHz.

• 6-dB programmable gain option provides the flexibility needed to achieve a high signal-to-noise ratio of up to 73.6 decibel full scale (dBFS) and spurious free dynamic range (SFDR) of up to 91 dBc for high receive sensitivity in 3G/LTE wireless infrastructure.

TI offers a variety of tools and support to speed development with the ADS42xx family, including:

•An evaluation module (EVM) for each part.

•TSW1200 digital capture tool for rapid analysis of EVMs.

•An Altera-compatible high-speed mezzanine connector and Xilinx-compatible FPGA mezzanine connector, allowing ADS42xx EVMs to mate to FPGA EVMs to speed system-level prototyping.

•IBIS models to verify board signal integrity requirements.

•Software for calculation utilities, including an ADC harmonic calculator, anti-aliasing calculation tool, and jitter and SNR calculator.

http://mwjournal.com/News/article.asp?HH_ID=AR_11162

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7493
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.12.11 19:27. Заголовок: High-speed ADC techn..


High-speed ADC technology paves the way for software defined radio
Yiannis N. Papantonopoulos, Systems and Applications Manager, Texas Instruments
8/3/2007 9:11 AM EDT
Software Defined Radio (SDR) addresses the tremendous capital expenditure demands placed on operators as wireless standards continue to evolve and change. The cost to install infrastructure is considerable, and it's this cost that inhibits rapid adoption and deployment of new wireless technologies. This poses a significant hindrance to the agility of operators in offering new and improved services to their subscribers.

Paradoxically, the goal of a fully reconfigurable radio that can adapt to a new standard or accommodate multiple standards simply through software upgrades is not limited by software. Indeed, it is the analog domain and its bridge to the digital world that presents system designers with their biggest challenge. The focus of this article is on the challenges of analog-to-digital (A/D) conversion as they pertain to SDR implementations, and how breakthroughs in analog-to-digital converters (ADCs) can bring true SDR closer to reality.

The problem
The big promise of SDR for operators is that it will eventually allow them to deploy one network, and one set of infrastructure capable of handling a broad range of radio frequencies and standards, along with their future evolutions. This requires the radio design to be flexible enough to allow for wider frequency coverage than usual. Additionally, it has to offer dynamic range beyond the range necessary for narrow band applications. So, ultimately, we could deal with a multi-carrier environment with carriers of different modulation types and bandwidths, blocking requirements, and other attributes.

Advances in digital signal processing (DSP) technology have elevated the digital backend capabilities of radios to levels that can be amenable to SDR implementations. Hence, the missing piece of the puzzle is getting the extremely-sensitive analog signals converted to the comfort of the digital domain. A/D conversion in these radios is pivotally important in trying to realize the goal. ADCs are used in both the receiver (Rx) and the transmitter (Tx) sections of the radio, and are the enabling components for SDR development

Key ADC specifications
Among the primary specifications driving the design of the Rx section of the radio are sensitivity and usable bandwidth. In simple terms, sensitivity refers to the radio's ability to effectively process very low-level signals at the antenna input, expressed in dBm. For the ADC, this most commonly translates into signal-to-noise ratio (SNR) specifications expressed in dBc or dBFS (dBc is the ratio of signal to noise expressed in reference to the carrier, whereas dBFS refers back to the full scale input of the ADC).

Closely related to the radio's capability to receive small signals and reject larger interferers is the spurious-free dynamic range (SFDR) of the ADC. This is the ratio of the wanted signal (carrier) to the next highest spurious component in the ADC's output, whether it is harmonic or not, expressed in dBc. Finally, the usable bandwidth of the converter, a term really not specified effectively, deals with the actual signal bandwidth that the ADC can digitize with adequate SNR and SFDR performance.

In standard industry practice, ADCs are specified to their -3dB point of their analog input 'frequency response.' However, a lot of modern day converters show dramatically decreased performance as the analog input frequency increases past 200-300 MHz, even though their bandwidth is rated to several hundreds of MHz.

It's all about bandwidth
One of the key advantages of SDR is its ability to handle a larger-than-usual frequency range without the need for new hardware. This is particularly appealing, given the nature of today's frequency map across the world. Each wireless standard has multiple frequencies defined for operation. For example, GSM alone can operate at frequencies around 400 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, and even 2500-2690 MHz for the GSM extension band. 3GPP frequencies include 1800 MHz, 1900 MHz and 2100 MHz, while WiMAX frequencies exist in the 2500 MHz, 3500 MHz, and all the way to 5 GHz, with more coming.

With such a plethora of frequencies, digitizing as large a signal bandwidth as possible through the ADC becomes a huge advantage. Therefore, it is the ADC sample rate that becomes critical in such implementations.
####################################################################

The Nyquist criterion limits the bandwidth an ADC can effectively digitize without aliasing (a process whereby the wanted signal after digitization folds over on itself thus producing distortion) to half its sample rate (Fs/2). Thus, for an ADC sampling at 200 MSPS (megasamples per second), the maximum bandwidth that can be effectively digitized is 100 MHz. In practical implementations, though, the filter used to band-limit the analog input to Fs/2 has a finite roll-off, which effectively further reduces the usable bandwidth.
#####################################

Beyond the receiver, the demand for high bandwidth also is key for the transmit section of the radio. Since the cost of the power amplifier is proportional to its output power, a key method of reducing the overall bill-of-materials (BOM) and operational cost is through increasing its efficiency. Modern digital pre-distortion algorithms that linearize the power amplifier at the transmitter rely on feeding back to the digital processor a digitized bandwidth that is a multiple of the transmitted signal's bandwidth. This, in turn, necessitates the use of an ADC capable of sampling at very high rates.

Signal-to-noise ratio
In order to maintain utmost sensitivity, an SDR design has to feature a large SNR so that very low-level received signals can be discerned, and effectively demodulated. The evolution of wireless standards to higher-order modulation schemes (such as 64QAM) imposes more stringent requirements on the SNR performance of the ADC. In situations where the received input power at the antenna is really low, the SNR of the ADC (in conjunction with the phase noise of the local oscillator) becomes the limiting factor and sets the sensitivity for the entire receiver.

Until recently, SDR designers had to trade off SNR for sample rate (bandwidth), since the state-of-the-art ADCs at several hundred MSPS were limited to resolution of 10 bits, with SNR levels around 50 dBFS. With the introduction of converters such as the ADS5463 (12-bit/500 MSPS), the envelope for monolithic 12-bit, ADCs essentially has doubled (previous art was at 250 MSPS). With SNR levels jumping to the mid-60s, implementations previously prohibitive can now become reality.

In addition to being able to effectively reconstruct as large an analog signal bandwidth as possible, the sample rate of the ADC offers an added benefit, usually referred to as processing gain. Typically, SNR for an ADC is calculated as the ratio of the power of the fundamental of a sinusoidal tone to the sum of the noise across the entire Nyquist band of the ADC (0 Hz through Fs/2, excluding DC). Typically, total noise is uniformly spread across the Nyquist zone. When the receiver processes a signal of a certain bandwidth within that zone, powerful digital filters can greatly attenuate the out-of-band noise. When the signal of interest has a bandwidth BWSIG and the ADC samples at a rate of Fs, the effective processing gain (PG) can be calculated as:





Figure 1 shows the processing gain that can be achieved by using a very high-speed ADC such as the ADS5463, sampling at 500 MSPS.


Figure 1: Processing gain versus wanted signal bandwidth for an ADC sampling at Fs = 500 MSPS
(Click to enlarge image)

The power of the digital backend of the SDR can fully exploit the benefits of the wideband capabilities of the ADC.

Ultimately, the evolution of wireless receivers will entail direct sampling at the RF frequency. Although the ADC technology needed for such a task is not feasible today, it is not unreasonable to expect that eventually technological breakthroughs may enable it.

However, jitter needs to be taken into account since, ultimately, it will limit the SNR. The well-documented equation that relates SNR to jitter for a sampled system is given in Equation 2:





where fin represents the analog input frequency, and tjitter the RMS value of the system's jitter. The internal jitter of the ADC sampling circuitry is added (in a root of the sum of squares fashion) to the externally provided sampling clock to the ADC.

Note that the limitation of SNR is independent of the actual sampling frequency, but directly related to the analog input frequency. This fundamental limitation is a major design consideration when deciding the placement of the intermediate frequency (IF) in receiver design. The benefit of simplified Rx architecture and filtering (and, hence, reduced cost) is countered by the limitations imposed by jitter and clocking the ADC as the IF is increased.

Spurious-free dynamic range (SFDR)
The linearity of an ADC, most often characterized by its SFDR, becomes critical in situations where the incident power at the receiver's antenna is of substantial power levels. This can happen when the wanted signal is strong (a desirable situation), or when an in-band interferer is strong (an undesirable situation).

In the latter case, the linearity of the ADC dictates whether the wanted signal can be effectively demodulated. This is particularly true when the desired signal's power is low. The presence of a large interferer effectively limits the application of any AGC function, since the total signal (wanted plus interferer) may already be approaching the full-scale range of the analog input. Thus, the ADC's inherent linearity performance becomes the bottleneck.

Just as jitter limits how high an SDR designer can place the IF, SFDR also weighs into that decision quite heavily. Many ADCs available in the market today exhibit high levels of linearity that are, however, limited to input frequencies below 200 MHz. Hence, the benefits of high IF placement cannot be realized due to the roll-off in SFDR performance.

New analog structures using cutting-edge BiCMOS process technologies have enabled the inclusion of an analog input buffer, capable of delivering high levels of SFDR across many hundreds of MHz. The analog input buffer of the ADS5463, for example, allows the user to easily achieve datasheet performance because it isolates the sensitive analog input from the switching within the ADC.

Additionally, it provides constant impedance across input frequency. Figure 2 shows that a converter such as the ADS5463 enables SFDR performance of over 70 dBc, for IFs at least as high as 500 MHz.
############################################################


Figure 1: ADS5463 SNR and SFDR performance over analog input frequency at 500 MSPS
(Click to enlarge image)

This dramatic improvement in performance substantially simplifies the design of the radio, especially since it is coupled with very high levels of SNR and processing gain. Using a very-high input frequency can further reduce the cost of the radio, since it removes an extra down-conversion step and its associated BOM impact.

Conclusion
The promise of true software-defined radio depends heavily on the evolution of high speed A/D conversion. Located at the heart of both the receiver and the transmitter, the ADC sets the performance for the entire radio. Recent breakthroughs in mixed-signal technology have enabled performance at unprecedented sample rates and analog input frequencies, simplifying the radio design and allowing for broader operating bandwidths and higher levels of sensitivity. As ADC technology keeps pushing the envelope, it will continue to pave the way for the advent of truly reconfigurable, multi-standard radio.

About the Author
Yiannis Papantonopoulos is Systems and Applications manager for high-speed ADCs at Texas Instruments Inc. He can be reached at yiannis@ti.com.

http://www.eetimes.com/design/automotive-design/4009968/High-speed-ADC-technology-paves-the-way-for-software-defined-radio

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7494
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.12.11 19:37. Заголовок: 09/12/2011 | 10..


09/12/2011 | 10:00 am
###################

E2V TECHNOLOGIES : e2v first to introduce 12bit 1.5 GSPS analogue to digital converter with both direct RF sampling in L-band and low input voltage range
News Items

e2v first to introduce 12bit 1.5 GSPS analogue to digital converter with both direct RF sampling in L-band and low input voltage range
date added : September 12, 2011

Building on the performance of its true single core high bandwidth family of ADCs with direct RF sampling, e2v announces the launch of

EV12AS200, a 12-bit 1.5 GSPS analogue to digital converter.
#########################################

The new ADC combines the benefits of direct RF sampling up to L band,
##################################################


calibration free stable performance versus temperature and a wider choice of ADC input driving options, thanks to the lowest input voltage range on the market for 12bit GSPS ADCs.

This device enables further innovation in high verticality oscilloscopes, spectrum analysers, high dynamic range point-to-point microwave data links, electronic warfare systems and data acquisition COTS boards.

The EV12AS200 features a full power input bandwidth of 2.3GHz with a roll-off pattern optimised for operation in the L-band area. It also features the lowest input voltage range in the 12bit GSPS class with only 500mVp-p, without sacrificing performance in direct RF sampling. This delivers a significant reduction in distortion effects induced by high voltage swings at high frequencies in any amplifiers used prior to the ADC, such as variable gain amplifiers used for signal zooming purposes.

The low input voltage range of EV12AS200 is also a very convenient feature to build high verticality oscilloscopes with multiple amplification stages prior to the ADC while maintaining a very low level of distortion in the amplifiers.

EV12AS200 is also the only 12bit ADC operating at up to 1.5 GSPS without the use of any form of internal interleaving.
###############################################################################

!
(ot awtora postinga)
###############


This is key for the EV12AS200 to achieve both a calibration-free stable dynamic performance versus temperature, and nominal dynamic performance that is available immediately at power-up as soon as the supply voltage has stabilised, without the need to wait for multi-second silicon warm-up and calibration.

Other noticeable benefits of EV12AS200 include a low latency of fewer than 5 clock cycles, which is convenient for real time systems, guaranteed no-missing codes at 1.5GSPS, important for high verticality oscilloscopes, an analogue and clock input impedance of 100 Ohms that is stable versus frequency and temperature, and fine adjustments of input gain and offset as well as clock skew, which facilitates interleaving of multiple converters to achieve even higher sample rates.

“This new ADC brings all the recognised benefits of e2v data converters familiar at 8 and 10 bit into the 12 bit GSPS class and enables further innovation in both direct RF sampling with stable performance at all temperatures and input driving flexibility. It also opens new possibilities for high resolution time domain applications such as high verticality oscilloscopes” said Nicolas Chantier, Product Marketing for e2v’s Broadband data conversion product line.

EV12AS200 is offered in a small footprint FpBGA 196 package with the choice of commercial temperature grade (0°C to +90°C) or industrial temperature grade (-40°C to +110°C).

Datasheet, samples and quotations are now available from e2v and from e2v’s authorised distributors around the world.

- ends -

Press contact:

Sylvie Mattei, Communications Manager

Phone: +33 4 76 58 30 25, mailto:sylvie.mattei@e2v.com

NOTES FOR EDITORS

About e2v

e2v is a leading global provider of specialist technology for high performance systems and equipment; delivering solutions, sub-systems and components for specialist applications within medical & science, aerospace & defence, and commercial & industrial markets.

e2v is headquartered in the UK, employs approximately 1500 people, has design and production facilities across Europe and North America, and has a global network of sales and technical support offices. For the year ended 31 March 2011, e2v reported sales of £229m and is listed on the London Stock Exchange. For more information visit e2v.com.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7495
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.12.11 19:40. Заголовок: http://www.msc.de/en..


http://www.msc.de/en/6338-www/version/default/part/AttachmentData/data/VIII-3_2011-VS-5481.pdf

EV12AS200 preliminary

1.5 GSPS ,12 bit ENOB =9.5 bit ,SFDR 66db,PD=3 w,FpBGA

Datasheet

http://www.msc-ge.com/en/6982-www/version/default/part/AttachmentData/data/EV12AS200ZPY_prel_April11.pdf


SFDR Fin 1.3 GHZ ,FSS =1.33 GSPS = 65dbfs

t.e mozno relizowat promezut(IF) 1000-1500 mgz

500 mgz eto polosa minimalno treb dlja RLS BMDO (smotri publ Lincoln laboratory)

razr. sposobnost pri 1000 mgz 250 mm
pri 500 mgz = 500 mm

Polosa signala lutschix AFAR RLS F-22/NIIP 800 -1000 mgz

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7499
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 11.12.11 22:39. Заголовок: http://www.msc-ge.co..


http://www.msc-ge.com/en/produkte/elekom/linear/e2v/broadband_data_converter.html

pdf file ADC iDAC e2V

Broadband Data Converters

With over 20 years experience in the design and manufacture of advanced semiconductor components,
e2v provides broadband data converters with high resolution (from 6 to 12 bits), high sampling rates (from 250 Msps to 5Gsps) and wide bandwidth (up to 5GHz)

e2v's family of 8, 10 and 12-bit A/D converters has grown to include sampling rates from 500 Msps to 5Gsps; all without the need for added off-chip external interleaving techniques.

e2v ADC's provide reveiver designers with market leading high linearity, ENOB and dynamic range coupled with analog bandwidths from 1GHz to over 3GHz for true high IF sampling.





Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7500
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 11.12.11 22:57. Заголовок: http://www.national...


http://www.national.com/ds/DC/ADC12D1800RF.pdf


Odna i taze model kak NAtional tak i TI ?



Features

Excellent noise and linearity up to and above fIN = 2.7 GHz
Configurable to either 3.6 GSPS interleaved or 1800 MSPS dual ADC
New DESCLKIQ Mode for high bandwidth, high sampling rate apps
Pin-compatible with ADC1xD1x00, ADC12Dx00RF
AutoSync feature for multi-chip synchronization
Internally terminated, buffered, differential analog inputs
Interleaved timing automatic and manual skew adjust
Test patterns at output for system debug
Time Stamp feature to capture external trigger
Programmable gain, offset, and tAD adjust feature
1:1 non-demuxed or 1:2 demuxed LVDS outputs
Applications

3G/4G Wireless Basestation

Receive Path
DPD Path
Wideband Microwave Backhaul
RF Sampling Software Defined Radio
Military Communications
SIGINT
RADAR / LIDAR
Wideband Communications
Consumer RF
Test and Measurement


http://focus.ti.com/general/docs/nationalsemiconductorproducts.tsp?genericPartNumber=ADC12D1800RF

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7501
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 12.12.11 17:05. Заголовок: Driving High Speed A..


Driving High Speed ADCs
with the LMH6521 DVGA for
High IF AC-Coupled
Applications
Texas Instruments
Application Note 2195
Vong Philavanh
November 16, 2011
Sampled data systems can be categorized into two main
types. The first and simplest is the baseband system known
as the “1st Nyquist-zone” system. The second is a more complex
under-sampled system, often referred to as the subsampled
system or Intermediate frequency (IF)-sampled
system.
------------------
Baseband system applications are generally DCcoupled
while the IF-sample systems applications tend to be
AC-coupled.
----------------------------

In this application note, the LMH6521 is combined
with National Semiconductor's high-speed analog-todigital
convertor (ADC), the ADC16DV160, that is optimized
for an IF frequency of 192 MHz.

http://www.ti.com/lit/an/snoa569/snoa569.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7502
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 12.12.11 17:50. Заголовок: 1.ADC12D1800RF SFDR ..


1.ADC12D1800RF SFDR 1448 mgz -0.5 dBFS -63.6 dbc DES mode ,non DES -61dbc
######################################################

http://www.national.com/ds/DC/ADC12D1800RF.pdf
http://www.national.com/en/rf/rf_sampling_adc.html
http://www.national.com/en/adc/ultra_high_speed_adc.html

17.2.1.1 Dual Edge Sampling Pin (DES)
The Dual Edge Sampling (DES) Pin selects whether the
ADC12D1800RF is in DES Mode (logic-high) or Non-DES
Mode (logic-low). DES Mode means that a single analog input
is sampled by both I- and Q-channels in a time-interleaved
manner.

2.EV12AS200ZPY 12-bit 1.5 Gsps ADC , SFDR -65 dBFS ,Fin=1.3 ghz ,Fs= 1.33 GSPS
#########################################
-1dBFS differential input mode



http://www.msc-ge.com/en/6982-www/version/default/part/AttachmentData/data/EV12AS200ZPY_prel_April11.pdf
http://www.msc-ge.com/en/produkte/elekom/linear/e2v/broadband_data_converter.html

Direct L-Band RF Down Conversion
�� Radar Systems
�� Satellite Communications Systems



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7547
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 22.12.11 21:58. Заголовок: The EV10AS150A combi..


The EV10AS150A combines a 10-bit 2.5 Gsps fully bipolar analog-to-digital converter chip, driving a fully bipolar DMUX
chip with selectable Demultiplexing ratio (1:2) or (1:4). The 5 GHz full power input bandwidth of the ADC allows the direct
digitization of up to 1 GHz broadband signals in the high IF region, in either L_Band or S_Band.
##############################################################
The EV10AS150A features
7.8 effective bit and close to –58 dBFS spurious level at 2.5 Gsps over the full 1st Nyquist for large signals close to ADC Full
Scale (–1 dBFS), and 8.1 bit ENOB at –6 dBFS in the 2nd Nyquist zone.

http://www.msc-ge.com/en/6008-www/version/default/part/AttachmentData/data/EV10AS150.pdf


• 5 GHz Full Power Input Bandwidth (–3 dB)
• ±0.5 dB Band Flatness from 10 MHz to 2.5 GHz
• Input VSWR = 1.25:1 from DC to 2.5 GHz
• Bit Error Rate: 10–12 at 2.5 Gsps

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7557
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 24.12.11 17:26. Заголовок: http://www.ll.mit.ed..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7595
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 13:14. Заголовок: e2v and SP Devices w..


e2v and SP Devices working together to deliver the ultimate in high-performance ADC solutions
December 13, 2011 -- e2v and SP Devices today announced their collaboration in the provision of high-performance Analogue-to-Digital (ADC) solutions. With the unique combination of the market's fastest 12-bit ADC core speed from e2v, and cutting-edge digital post-processing technology from SP Devices, system designers now have access to never before seen ADC solutions.

This new resource is offered following market demand for more complete joined-up services to design teams. This solution from e2v and SP Devices provides an all-European ADC capability to deliver against designers' exacting requirements across a number of industries including test & measurement, military, and communications.


As an example, with their recently released EV12AS200, a 1.5 GSPS 12-bit ADC, e2v is introducing a true single-core device that, when combined with SP Devices ADX4 time-interleaving technology, enables 12-bit resolution at an unprecedented 6 GSPS.
####################################################################


"We are very excited about this collaboration with e2v", said Ulrik Lindblad, co-founder of SP Devices. "The combination of SP Devices' time-interleaving and linearization technology with e2v's impressive high-performance ADCs offers customers the ability to grow their business, stay ahead of competition, and enter new exciting markets."

"SP Devices' performance enhancing technologies and digitizers are well recognized in the industry," said Nicolas Chantier, Product Marketing Manager for e2v's broadband data converter group, adding "The key to achieving genuine performance breakthroughs in terms of resolution and sampling rate is precisely this unique combination of technology from e2v and SP Devices. Customers can now benefit from the coordinated support of both companies to reach the highest possible performance levels."

About e2v

e2v is a leading global provider of specialist technology for high performance systems and equipment; delivering solutions, sub-systems and components for specialist applications within medical & science, aerospace & defence, and commercial & industrial markets.

e2v is headquartered in the UK, employs approximately 1500 people, has design and production facilities across Europe and North America, and has a global network of sales and technical support offices. For the year ended 31 March 2011, e2v reported sales of Ј229m and is listed on the London Stock Exchange. For more information visit e2v.com.

About SP Devices

SP Devices (Signal Processing Devices Sweden AB and Signal Processing Devices Inc.) provides digital signal

processing IP for the enhancement of analogue-to-digital conversion and high speed digitizers. The IP products are available for implementation in ASICs or deployed on FPGA platforms. SP Devices' portfolio of products enables customers to build systems with state-of-the-art analogue-to-digital performance that enables advances in the areas of Test and Measurement, software defined radio, radio base station transceivers, digital imaging, high-speed data acquisition and broadband communication.

Additional company and product information is available at www.spdevices.com.


http://spdevices.com/



e2v and SP Devices working together to deliver the ultimate in high-performance ADC solutions
date added : 12 December 2011


e2v and SP Devices today announced their collaboration in the provision of high-performance Analogue-to-Digital (ADC) solutions. With the unique combination of the market’s fastest 12-bit ADC core speed from e2v, and cutting-edge digital post-processing technology from SP Devices, system designers now have access to never before seen ADC solutions.



This new resource is offered following market demand for more complete joined-up services to design teams. This solution from e2v and SP Devices provides an all-European ADC capability to deliver against designers’ exacting requirements across a number of industries including test & measurement, military, and communications.



As an example, with their recently released EV12AS200, a 1.5 GSPS 12-bit ADC, e2v is introducing a true single-core device that, when combined with SP Devices ADX4 time-interleaving technology, enables 12-bit resolution at an unprecedented 6 GSPS.



“We are very excited about this collaboration with e2v”, said Ulrik Lindblad, co-founder of SP Devices. “The combination of SP Devices’ time-interleaving and linearization technology with e2v’s impressive high-performance ADCs offers customers the ability to grow their business, stay ahead of competition, and enter new exciting markets.”



“SP Devices’ performance enhancing technologies and digitizers are well recognized in the industry,” said Nicolas Chantier, Product Marketing Manager for e2v’s broadband data converter group, adding “The key to achieving genuine performance breakthroughs in terms of resolution and sampling rate is precisely this unique combination of technology from e2v and SP Devices. Customers can now benefit from the coordinated support of both companies to reach the highest possible performance levels.”





- ends -



Press contact:

Sylvie Mattei, Communications Manager

Phone: +33 4 76 58 30 25, mailto:sylvie.mattei@e2v.com



NOTES FOR EDITORSAbout e2v

e2v is a leading global provider of specialist technology for high performance systems and equipment; delivering solutions, sub-systems and components for specialist applications within medical & science, aerospace & defence, and commercial & industrial markets.

e2v is headquartered in the UK, employs approximately 1500 people, has design and production facilities across Europe and North America, and has a global network of sales and technical support offices. For the year ended 31 March 2011, e2v reported sales of £229m and is listed on the London Stock Exchange. For more information visit e2v.com.



About SP Devices

SP Devices (Signal Processing Devices Sweden AB and Signal Processing Devices Inc.) provides digital signal

processing IP for the enhancement of analogue-to-digital conversion and high speed digitizers. The IP products are available for implementation in ASICs or deployed on FPGA platforms. SP Devices’ portfolio of products enables customers to build systems with state-of-the-art analogue-to-digital performance that enables advances in the areas of Test and Measurement, software defined radio, radio base station transceivers, digital imaging, high-speed data acquisition and broadband communication.

Additional company and product information is available at www.spdevices.com.





For further information, contact:

Jonas Nilsson, CEO

Signal Processing Devices Sweden AB

Phone: +46 13 465 06 01

jonas.nilsson@spdevices.com

http://www.msc.de/de/6338-www/version/default/part/AttachmentData/data/VIII-3_2011-VS-5481.pdf%3Flanguage%3Den

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7596
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:08. Заголовок: http://www.ecnmag.co..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7597
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:11. Заголовок: TEK MICROSYSTEMS COM..


TEK MICROSYSTEMS COMBINES ULTRA HIGH SPEED ADC AND DAC WITH HIGHEST DENSITY FPGA PROCESSING
1 month 1 week ago → New Products
The new Calypso-V6 Two or Six Channel 12-bit ADCs with Up To 3.6 GSPS per Channel
The new Calypso-V6 Two or Six Channel 12-bit ADCs with Up To 3.6 GSPS per Channel
(click image to zoom by 1.4x)
The new Calypso-V6 Two or Six Channel 12-bit ADCs with Up To 3.6 GSPS per Channel
The new Calypso-V6 Two or Six Channel 12-bit ADCs with Up To 3.6 GSPS per Channel
(click image to zoom by 4.1x)

Washington, DC – November 15, 2011 – At the 48th Annual AOC International Symposium and Convention, TEK Microsystems, Incorporated, the leading supplier of VME and VXS-based signal acquisition, generation and FPGA-based processing products, has announced the latest member of our QuiXilica product family. The new Gemini-V6 supports either one 12-bit analog-to-digital converter (ADC) input channel at 3.6 GSPS (Gigasamples per second) or three input channels at 1.8 GSPS, combined with a 12-bit DAC output channel operating at up to 4.0 GSPS. Like all members of the QuiXilica-V6 VME / VXS family, the Gemini-V6 is compatible with legacy VME systems as well as newer ANSI/VITA 41 VXS based systems and combines the highest density FPGA processing available in any 6U form factor with the ultimate in ultra wide band ADC signal acquisition and DAC signal generation for advanced Electronic Warfare applications.

“Tekmicro is committed to providing our customers with the best available ADC and DAC technology for 10, 12, and 16 bit resolutions. The new Gemini-V6 is another industry first for Tekmicro, combining the fastest available sampling rate for 12-bit signal acquisition with a 4 GHz DAC signal output in a 6U VME / VXS form factor”, comments Andrew Reddig, President / CTO of Tekmicro. “By integrating ultra high speed ADC and DAC technology with high density FPGA processing, we are able to meet our customers’ requests for a modular COTS building block with ultra low input-to-output latency, enabling the most advanced DRFM-based EW applications.”

Gemini-V6 Supports Ultra Wide Band Signal Acquisition and Generation

Gemini-V6 is based on the National Semiconductor ADC12D1800RF device which supports either a pair of channels in non-interleaved mode or a single channel using 2:1 interleaved sampling. Gemini-V6 contains two ADC devices, supporting a total of either three channels plus trigger at 1.8 GSPS or one channels plus trigger at 3.6 GSPS, plus a separate 12-bit DAC output channel based on the Euvis M653D which operates at up to 4.0 GSPS.

Gemini-V6 also includes sample-accurate trigger synchronization in all modes, allowing synchronization of input and output channels as well as coherent processing for N-channel algorithms both within a single card and across multiple cards. GPS and timestamp inputs are also available to support precise timing and geolocation.

High Density FPGA Processing

The Gemini-V6 contains two front end FPGA devices, one attached to the ADCs and one to the DAC. The front end FPGAs can be configured with LX240, SX315, or SX475 devices, providing both the highest FPGA processing density available in any 6U form factor today as well as the only VME / VXS platform supporting Virtex-6 FPGAs.

The two front end FPGAs are supplemented with a “backend” FPGA which can be used for additional processing or for backplane or front panel communications. The backend FPGA can also be configured with a range of Xilinx Virtex-6 FPGA options, from the standard LX240 up to a SX475, depending on application requirements.

Memory, Network and Interconnect Resources

The Gemini-V6 includes six banks of DDR3 memory with total capacity of 5 GB and aggregate throughput of 32 GB/s, supporting a wide range of signal processing algorithms with deep memory buffering of the entire signal acquisition stream. The backend FPGA also has two banks of QDR-II memory available for applications that require memory with lower random access latency. Each FPGA supports a Gigabit Ethernet interface for control plane purposes, along with a range of front panel and backplane I/O connections for high speed communications with other processing cards. Gemini-V6 provides an onboard Gigabit Ethernet switch for network connectivity between the front panel, backplane interface, and all onboard FPGAs.

System Management

The Gemini-V6 is based on Tekmicro’s QuiXilica-V6 baseboard which provides the tools necessary for reliability, availability and maintainability in deployed applications. A dedicated system management processor can be used to monitor power and thermal sensors, and is also responsible for managing FPGA initialization and bitstream management. Tekmicro’s QuiXstart technology, included in QuiXilica products since 2005, supports FPGA bitstreams using either onboard flash memory or offboard network resources to support secure applications while maintaining hardware in a sanitized state.

Ruggedization Support for Deployed Applications

The Gemini-V6 is available for a wide range of operating environments, including commercial grade, rugged air and conduction cooled, allowing the card to be used for both laboratory and deployed requirements in both VME and VXS systems.

Comprehensive Developers Kit Speeds Time To Market

The Gemini-V6 is supported by a comprehensive Developer’s Kit that includes interface IP cores for all onboard resources along with Tekmicro’s QuiXtream network toolkit for rapid application development using network-enabled FPGAs. Reference designs are included, with source code, to support quick prototyping of user applications with minimal learning curve.

The Gemini-V6 will be available in for early access customers starting in January 2012.

About TEK Microsystems, Incorporated.

Founded in 1981 and headquartered in Chelmsford, Massachusetts, Tekmicro designs, manufactures and delivers a wide range of advanced high-performance boards and systems for embedded real-time signal acquisition, generation, processing, storage and recording. Tekmicro provides both commercial and rugged grade products which are used in real-time systems designed for a wide range of defense, intelligence and industrial applications such as C4ISR, signals intelligence, electronic warfare and radar. For additional information see www.tekmicro.com.
Source: TEK Microsystems Inc

http://www.vmecritical.com/news/db/?29274

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7598
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:30. Заголовок: FORM B - PROPOSAL SU..


FORM B - PROPOSAL SUMMARY
PROPOSAL NUMBER: 09-2 S1.02-9911
PHASE 1 CONTRACT NUMBER: NNX10CD96P
SUBTOPIC TITLE: Active Microwave Technologies
PROPOSAL TITLE: High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Ridgetop Group, Inc.
6595 North Oracle Road
Tucson, AZ 85704 - 5645
(520) 742-3300

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Justin Judkins
justin.judkins@ridgetopgroup.com
6595 North Oracle Road
Tucson, AZ 85704 - 5645
(520) 742-3300

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 8

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming (DBF) systems that will be used in NASA's future radar applications. The ADC will employ a novel combination of time interleaving, high-speed silicon-germanium BiCMOS technology and low-power techniques, such as the double-sampling technique, providing exceptional sampling speed of 500 MSPS, 1.5 GHz analog bandwidth,12 bits of resolution, and below 500 mW power dissipation, exceeding NASA's requirements.
Ordinarily, ADC design requires large trade-offs in speed, resolution, and power consumption. The significance of this innovation is that it simultaneously provides a high-speed, high-resolution, and low-power ADC that is well ahead of the state of the art. These three characteristics are needed for DBF systems that contain large ADC arrays. The power consumption of existing ADC chips prohibits implementation of large DBF arrays in space. Ridgetop's innovative design leverages newer semiconductor process technologies that combine silicon and germanium into a compound semiconductor.
Ridgetop has identified two Phase 2 objectives, which are:
1. Design, fabricate and characterize Test Chip 1 that contains critical ADC subcircuits.
2. Design, fabricate and characterize Test Chip 2 that contains the complete radiation tolerant, digitally calibrated, time-interleaved ADC design.
During Phase 1 Ridgetop identified the topologies for all of the circuit blocks that will be included on Test Chip 1 and Test Chip 2. Ridgetop has also completed transistor-level designs for the key components on these chips.
Estimated TRL at beginning and end of Phase 2 contract: Begin 4; End 8.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
NASA applications include radar, imaging, detectors, space radio astronomy, and communication circuits. Space radar systems stand to benefit from the combination of high resolution and low power of the proposed ADC. The technology is ideal for NASA Jet Propulsion Laboratory's radar research program, UAVSAR program, and many other critical communication circuits.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Non-NASA commercial applications include:
В• Phased arrays for ballistic missile defense (BMD) (the DBF technology is commonly cited as a "huge leap" for radar-based missile defense systems)
В• Space-based radar for military/intelligence targets or earthquake detection
В• Measurement applications, including pin test electronics on ATE systems
В• Space navigation systems
В• Conformal arrays for UAVs
В• Telecommunications applications, such as software-defined radio
В• Medical imaging device manufacturers
В• Computer networks, hard disk readout circuits, digital oscilloscopes, etc. ; these applications require 500 MSPS sampling speeds, and the "effective number of bits" (ENOB) used in contemporary converters is <10 bits, and the power dissipation is >2 W
В• Power-limited applications, such as laptops, wireless devices and PDAs.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Guidance, Navigation, and Control
Microwave/Submillimeter
Radiation-Hard/Resistant Electronics
Telemetry, Tracking and Control
Form Generated on 08-06-10 17:29

http://sbir.gsfc.nasa.gov/SBIR/abstracts/09/sbir/phase2/SBIR-09-2-S1.02-9911.html

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7598
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:30. Заголовок: FORM B - PROPOSAL SU..


FORM B - PROPOSAL SUMMARY
PROPOSAL NUMBER: 09-2 S1.02-9911
PHASE 1 CONTRACT NUMBER: NNX10CD96P
SUBTOPIC TITLE: Active Microwave Technologies
PROPOSAL TITLE: High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Ridgetop Group, Inc.
6595 North Oracle Road
Tucson, AZ 85704 - 5645
(520) 742-3300

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Justin Judkins
justin.judkins@ridgetopgroup.com
6595 North Oracle Road
Tucson, AZ 85704 - 5645
(520) 742-3300

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 8

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming (DBF) systems that will be used in NASA's future radar applications. The ADC will employ a novel combination of time interleaving, high-speed silicon-germanium BiCMOS technology and low-power techniques, such as the double-sampling technique, providing exceptional sampling speed of 500 MSPS, 1.5 GHz analog bandwidth,12 bits of resolution, and below 500 mW power dissipation, exceeding NASA's requirements.
Ordinarily, ADC design requires large trade-offs in speed, resolution, and power consumption. The significance of this innovation is that it simultaneously provides a high-speed, high-resolution, and low-power ADC that is well ahead of the state of the art. These three characteristics are needed for DBF systems that contain large ADC arrays. The power consumption of existing ADC chips prohibits implementation of large DBF arrays in space. Ridgetop's innovative design leverages newer semiconductor process technologies that combine silicon and germanium into a compound semiconductor.
Ridgetop has identified two Phase 2 objectives, which are:
1. Design, fabricate and characterize Test Chip 1 that contains critical ADC subcircuits.
2. Design, fabricate and characterize Test Chip 2 that contains the complete radiation tolerant, digitally calibrated, time-interleaved ADC design.
During Phase 1 Ridgetop identified the topologies for all of the circuit blocks that will be included on Test Chip 1 and Test Chip 2. Ridgetop has also completed transistor-level designs for the key components on these chips.
Estimated TRL at beginning and end of Phase 2 contract: Begin 4; End 8.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
NASA applications include radar, imaging, detectors, space radio astronomy, and communication circuits. Space radar systems stand to benefit from the combination of high resolution and low power of the proposed ADC. The technology is ideal for NASA Jet Propulsion Laboratory's radar research program, UAVSAR program, and many other critical communication circuits.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Non-NASA commercial applications include:
В• Phased arrays for ballistic missile defense (BMD) (the DBF technology is commonly cited as a "huge leap" for radar-based missile defense systems)
В• Space-based radar for military/intelligence targets or earthquake detection
В• Measurement applications, including pin test electronics on ATE systems
В• Space navigation systems
В• Conformal arrays for UAVs
В• Telecommunications applications, such as software-defined radio
В• Medical imaging device manufacturers
В• Computer networks, hard disk readout circuits, digital oscilloscopes, etc. ; these applications require 500 MSPS sampling speeds, and the "effective number of bits" (ENOB) used in contemporary converters is <10 bits, and the power dissipation is >2 W
В• Power-limited applications, such as laptops, wireless devices and PDAs.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Guidance, Navigation, and Control
Microwave/Submillimeter
Radiation-Hard/Resistant Electronics
Telemetry, Tracking and Control
Form Generated on 08-06-10 17:29

http://sbir.gsfc.nasa.gov/SBIR/abstracts/09/sbir/phase2/SBIR-09-2-S1.02-9911.html

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7599
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:35. Заголовок: http://ww1.prweb.com..


http://ww1.prweb.com/prfiles/2011/09/29/4750064/XMC-1151.pdf

Applications
• SIGINT (COMINT/ELINT)
• Joint Airborne SIGINT Architecture (JASA)
IF Digitizer/processor
• RADAR
• Satellite Receiver
• Electronic Support Measures (ESM)
• Spectral Analysis
• Software Defi ned Radio (SDR)
• High-Speed Test and Measurement
• Wireless Set-Top Box Development
• Wideband Sensing for Cognitive Radio
• Channel Measurement and Characterization

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7600
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:47. Заголовок: http://solidearth.jp..


http://solidearth.jpl.nasa.gov/insar/documents/InSAR_Concept_Study%20Report_7-27-04c.pdf

InSAR
Interferometric Synthetic Aperture Radar
Concept Study Report
JPL 2004

Figure 4-2. InSAR Radar Modes str 29 /40
############################


4.7 Payload Accommodation str 45/56
###################

The ECHO design utilized the Astrium spacecraft bus, had a
baseline antenna size of 2 m x 13.8 m, and was designed to fit within the Dnepr launch
vehicle fairing. To increase the performance margin the InSAR mission is baselining a
larger SAR antenna compared to ECHO. The Spectrum Astro SA-200HP bus was
examined for the InSAR mission. The resulting preliminary Flight System configuration
included accommodation of the larger (2.5 m x 13.8 m) InSAR antenna and met the
Delta II 2920-10 payload fairing volume constraints. The Ball Aerospace BCP 2000 bus
was also examined for the InSAR mission. This configuration included the larger SAR
antenna (2.5 m x 13.8 m) and preliminary analysis indicates the design can meet the
Delta II 2920-10 payload fairing volume constraints. Previous studies and the InSAR
industry survey effort give high confidence in the ability to accommodate the InSAR
payload on a commercial spacecraft bus.


str 51/62
###########
4.10.2 L-band Transceiver
The L-band Transceiver takes the IF chirp generated at 142.5 – 222.5 MHz and
upconverts it to L-band (1220 – 1300 MHz) with a local oscillator of 1440 MHz (thus
inverting the spectrum). Using this high-side LO mixing scheme produces no mixing
intermodulation products in the L -band chirp. In the Receive chain, it is desirable to
avoid requiring very sharp filters since they are more sensitive to phase vs. temperature
variations, and are more bulky. So, the L-band filter is generous and its purpose is to
only limit possible interference and noise into the receiver. With an LO of 1320 MHz
(again inverting the spectrum) the resulting baseband frequency range of 22.5 to 102.5
We chose an offset video frequency range of 22.5MHz to 102.5MHz to be digitized at
250MSps

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7601
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 17:47. Заголовок: http://solidearth.jp..


http://solidearth.jpl.nasa.gov/insar/documents/InSAR_Concept_Study%20Report_7-27-04c.pdf

InSAR
Interferometric Synthetic Aperture Radar
Concept Study Report
JPL 2004

Figure 4-2. InSAR Radar Modes str 29 /40
############################


4.7 Payload Accommodation str 45/56
###################

The ECHO design utilized the Astrium spacecraft bus, had a
baseline antenna size of 2 m x 13.8 m, and was designed to fit within the Dnepr launch
vehicle fairing. To increase the performance margin the InSAR mission is baselining a
larger SAR antenna compared to ECHO. The Spectrum Astro SA-200HP bus was
examined for the InSAR mission. The resulting preliminary Flight System configuration
included accommodation of the larger (2.5 m x 13.8 m) InSAR antenna and met the
Delta II 2920-10 payload fairing volume constraints. The Ball Aerospace BCP 2000 bus
was also examined for the InSAR mission. This configuration included the larger SAR
antenna (2.5 m x 13.8 m) and preliminary analysis indicates the design can meet the
Delta II 2920-10 payload fairing volume constraints. Previous studies and the InSAR
industry survey effort give high confidence in the ability to accommodate the InSAR
payload on a commercial spacecraft bus.


str 51/62
###########
4.10.2 L-band Transceiver
The L-band Transceiver takes the IF chirp generated at 142.5 – 222.5 MHz and
upconverts it to L-band (1220 – 1300 MHz) with a local oscillator of 1440 MHz (thus
inverting the spectrum). Using this high-side LO mixing scheme produces no mixing
intermodulation products in the L -band chirp. In the Receive chain, it is desirable to
avoid requiring very sharp filters since they are more sensitive to phase vs. temperature
variations, and are more bulky. So, the L-band filter is generous and its purpose is to
only limit possible interference and noise into the receiver. With an LO of 1320 MHz
(again inverting the spectrum) the resulting baseband frequency range of 22.5 to 102.5
We chose an offset video frequency range of 22.5MHz to 102.5MHz to be digitized at
250MSps


4.11.2 Science Acquisition ADC
A high sampling rate ADC (Analog-to-Digital Converter) was investigated for conversion
of the analog offset video receive signal into a digital stream. The goal was to identify a
fairly high speed, low power ADC for InSAR science data acquisition. A minimum
sampling rate of 250 MHz is required to sufficiently sample the bandwidth.

80 mgz

T.e . po treb .NASA esli ADC emeet 1.5 GSPS to polosa signala mozet bit maximum 500 mgz
##############################################################
nachalnaya w PRO/BMDO Lincoln laboratory C-band radar

Samoletnix RLS NIIP AFAR i F-22 do 1000 mgz

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7605
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 18:28. Заголовок: Digital intermediate..


Digital intermediate frequency receiver module for use in airborne SAR applications
Assignee: Sandia Corporation (Albuquerque, NM)
---------------------------------------------------------

BACKGROUND

Fine-resolution, high-performance synthetic aperture radar (SAR) system having real-time image formation capabilities are currently being developed. For example, a system being developed by Sandia National Laboratories has a 4 GHz first intermediate frequency (IF) receiver. A simplified block diagram of the current generation IF receiver is shown in FIG. 1 which has been labeled as prior art.



http://www.patents.com/us-6864827.html

1. A digital receiver for use in radar systems, comprising: an intermediate frequency (IF) converter to translate a higher frequency 1st IF to a lower frequency 2nd IF; an analog-to-digital converter (ADC); a digital signal processor (DSP) including IF (range) domain and Doppler (azimuth) domain filtering, and at least one phase history data interface; wherein the IF converter translates a given radar 1st IF frequency to a 2nd IF necessary to facilitate sampling and efficient quadrature demodulation, and at least one phase history output interface moves data to an image formation processor or a raw phase history storage subsystem.

5. The invention of claim 1 wherein said second IF frequency is one fourth of the ADC sample frequency. (MAX108 1 gsps)
20. The invention of claim 1 wherein the first IF is at about 4 GHz and the second IF frequency is at about 250 MHz.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7606
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 19:51. Заголовок: http://www.apissys.c..


http://www.apissys.com/pdf/AF202.pdf

The AF202 is fully supported on ApisSys 3U VPX FPGA processing engines, making it ideally suited for test and measurement, Electronic Warfare, Ultra Wideband Radar Receivers or LIDAR applications.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7607
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 20:13. Заголовок: SECTION 4 HIGH SPEED..


SECTION 4 HIGH SPEED SAMPLING ADCs
-----------------------------------------------


http://www.analog.com/static/imported-files/seminars_webcasts/36892123522623Section4.pdf

ADC Dynamic Considerations
Selecting the Drive Amplifier Based on
ADC Dynamic Performance
Driving Flash Converters
Driving the AD9050 Single-Supply ADC
Driving ADCs with Switched Capacitor Inputs
Gain Setting and Level Shifting
External Reference Voltage Generation
ADC Input Protection and Clamping
Applications for Clamping Amplifiers
Noise Consideratio

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7608
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 20:19. Заголовок: As in many communica..


As in many communications applications, the defense-electronics industry has been trending toward receivers with more bandwidth and higher dynamic range. Applications in this segment include Signals Intelligence (SIGINT) receivers, as well as radar for military and Homeland Security usage. SIGINT systems can be classified as Communications Intelligence (COMINT, communication between people) or Electronic Intelligence (ELINT, typically radar signals).

Both COMINT and ELINT systems benefit from higher bandwidth, since more information is gathered in a given amount of time. Higher bandwidth in a radar receiver produces greater spatial resolution, which in turn creates the ability to distinguish smaller targets or multiple targets that are clustered together.
--------------

Traditionally, 100-200 MSPS high-resolution ADCs have been used in SIGINT and radar receivers. More recently, these systems have employed 12-14 bit converters with sample rates in the 250-500 MSPS range. Current developments are requiring multi-GSPS converters in this same resolution range, which favors time interleaving of multiple monolithic ADCs on the printed circuit board. In this application, the power consumption of each ADC is critical, since some radar receivers may use hundreds of ADCs.

A second trend in defense electronics receivers is toward higher dynamic range, which is predominantly set by the SNR.
----------------------------------------------------------------------------------------------------------------------------------------
Dynamic range defines the receiver’s ability to detect small signals in the presence of large signals.

For example, consider two objects being imaged by a radar system in which the target is further from the antenna than a second object. The closest object will produce the strongest backscatter signal, thereby determining the total gain that can be applied without saturating the receiver. The target signal will be much smaller, and may not be received at all if its magnitude is below the detection threshold set by the dynamic range.

In SIGINT systems, higher dynamic range translates to successful capture and decoding of weaker or more distant signals in the presence of interference (either natural or man-made), thereby providing more advanced warning of threats. A low power, high SNR, 14-bit, 500 MSPS ADC, such as the ISLA214P50IRZ from Intersil -- with built-in support for time-interleaved systems -- is an enabling technology for the defense electronics industry, especially SIGINT and radar.

http://www.eetimes.com/design/analog-design/4211774/Advanced-ADCs-deliver-very-high-sample-rates--resolution--and-with-low-power-

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7609
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 20:35. Заголовок: Another benefit of s..


Another benefit of sampling at higher frequencies is that in systems where large bandwidths are not required, the high-IF sampling of the faster converters can be used to gain SNR performance using of decimation. When decimating an A/D converter's output, you essentially throw away a periodic number of samples. Every time the output is decimated by a factor of two, where half the samples are removed, the SNR is improved by three dB. The cost is that the effective sample rate is now halved and, therefore, so is the available bandwidth.

For example, suppose a system requires only 20 MHz of bandwidth, but the form factor needs to be small. It is possible with today's fastest 14-bit A/D converter to sample this 20 MHz of bandwidth at 200 MSPS with the center input frequency being 350 MHz, a reasonable output for an RF-to-IF mixing stage. Choosing this frequency for the IF centers the signal band in the converter's Nyquist zone, which spans 300 to 400 MHz. With the signal bandwidth residing in the 340-360 MHz range, the AAF has 40 MHz on either side of the signal to operate. From the contour plots in Figure 1, a converter can achieve 69 dBFS SNR and 73 dBc SFDR at this sample rate and input frequency.


With only 20 MHz of bandwidth to sample, a DDC's numerically controlled oscillator (NCO) could mix the signal to the I and Q bands. In turn, this allows the 200 MSPS sample rate to be decimated by a factor of four to an effective sample rate of 50 MSPS, increasing the SNR by 6 dB to 75 dBFS.

http://www.eetimes.com/design/industrial-control/4009976/Using-high-IF-sampling-A-D-converters-beyond-baseband-frequencies


Using high-IF sampling A/D converters beyond baseband frequencies
Charles Sanna, Product Marketing Engineer, High-Speed ADCs, Texas Instruments Incorporated


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7610
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 20:39. Заголовок: http://www.analog.co..


http://www.analog.com/static/imported-files/circuit_notes/CN0140.pdf

High Performance, Dual Channel IF Sampling Receiver

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7611
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 28.12.11 22:56. Заголовок: http://www.armms.org..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7621
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 00:22. Заголовок: http://people.ece.co..


http://people.ece.cornell.edu/wes/Projects/AD_notes/SEMINARS/NARROW.PDF%3b1

IF-Sampling Receiver
Design Example

Dual Channel Gain-Ranging ADC with RSSI: AD6600
Optimized for “Narrowband”, IF-Sampling Receivers
Sampling to 20 MSPS; digitizes Analog inputs to 70- 250 MHz
90+ dB Dynamic Range: 30 dB variable attenuation & 60+ dB in ADC

60+ dB in ADC

chto malo ...s ARU terjaetsja slabij signal
#############################

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7622
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 00:33. Заголовок: http://webench.natio..


http://webench.national.com/rd/RD/RD-179.pdf

2.0 Features
Key Features of the SP16160CH1RB High-IF Sub-Sampling
Receiver Reference Design Board
Ўц Demonstrates a high-IF sub-sampling subsystem
architecture used in wireless infrastructure systems
Ўц Configured for a 20 MHz input bandwidth centered at 192
MHz
Ўц Configured with a low-noise, 153.6 MSPS CMOS
sampling clock
Ўц Featured Products Include:
ЎЄ ADC16DV160 dual 16-bit, 160 Megasample per
second (MSPS) ADC with parallel LVDS outputs
ЎЄ LMH6517 Digitally-controlled, Variable Gain Amplifier
(DVGA) with 31.5 dB gain range in 0.5 dB steps
ЎЄ LMK04031B low-jitter precision clock conditioner
consisting of cascaded phase locked loops (PLLs), an
internal voltage controlled oscillator (VCO) and a
distribution stage
ЎЄ Several energy-efficient power management ICs
Ўц Large-signal (-1 dBFS) performance for a 192 MHz input
signal:
ЎЄ SNR = 71 dBFS
ЎЄ SFDR > 80 dBFS
Ўц Small-signal (-6 dBFS) performance for a 192 MHz input
signal:
ЎЄ SNR = 72.7 dBFS
ЎЄ SFDR > 92 dBFS
Ўц 200 kHz channel performance for base-station receiver
applications:
ЎЄ SNR = 99 dBFS under normal conditions
ЎЄ SNR = 94 dBFS under blocking conditions
ЎЄ SFDR > 90dBFS under blocking conditions
Ўц Total integrated jitter < 200 fs

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7623
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 00:42. Заголовок: JPL 2010 I. Introd..


JPL 2010

I. Introduction
To address the future telemetry, navigation, and radio science needs of the Deep Space
Network (DSN), considerable e ort at JPL has been directed toward the development of a
wideband ground receiver, intended to supplement and expand the capabilities of the
currently operational Block V Receiver (BVR). Among the challenges encountered in this
e ort has been the need to process both high data rate telemetry (well in excess of
150 Mbps), as well as telemetry from very low-rate missions. Another key element of this
work has been the selection of a processing platform that is well-suited to rmware and
software recon gurability. These objectives have led to the development of the
Recon gurable Wideband Ground Receiver (RWGR): a variable data rate,

http://ipnpr.jpl.nasa.gov/progress_report/42-180/180D.pdf



The RWGR is an intermediate frequency (IF)
sampling receiver that operates at a xed input sampling rate of 1:28 GHz. It is designed
to accommodate a continuous range of data rates from 4 Bd (symbols/second or baud)
#########################################################

to
320 MBd, and is capable of processing 500 MHz of bandwidth.
########################################

In contrast, the BVR
operates at a sample rate of 160 MHz and can only accommodate a bandwidth of 72 MHz.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7630
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 17:46. Заголовок: SDR primer (raschet..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7631
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 18:20. Заголовок: This article shows h..


This article shows how averaging the outputs of multiple high-speed ADCs can be used to improve data converter SNR. While an alternate technique of oversampling the input signal using faster ADCs is possible, the averaging approach seems preferable because faster ADCs which enable oversampling may not be available, and lower-speed ADCs used in an averaging approach may have better initial SNR specifications and lower power. This article examined the averaging approach.



Hardware was built to measure the SNR performance of using two and three high-speed (190 Msps) ADCs to sample an input signal in parallel. We found that special care must be given to the impedance transformation of the input matching circuit, as a lot of signal attenuation and distortion can be caused by the impedance mismatch.


http://www.eetimes.com/design/automotive-design/4009960/Multiple-A-Ds-versus-a-single-one-pushing-high-speed-A-D-converter-SNR-beyond-the-state-of-the-art

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7632
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 19:07. Заголовок: sistema swjazi Mils..


sistema swjazi Milstar 44ghz/20 ghz

http://www.boeing.com/defense-space/space/bss/factsheets/government/milstar_ii/milstar_ii.html
http://www.mitre.org/work/tech_papers/tech_papers_99/airborne_demo/airborne_demo.pdf

http://www.as.northropgrumman.com/products/milstar/assets/Milstar_Digital_Processing.pdf

To perform these complex functions, the MDR digital processing subsystem relies on 14 custom application-specific integrated circuits and 397 large-scale integrated (LSI) circuits, all fabricated in CMOS technology. This figure represents a decrease of 37 percent from the 630 custom LSI circuits required for each LDR payload.



1 IF (pch) = 7.4 ghz
2. IF verojatno ot 70 mhz do 280 mgz

t.e. vozmozno ispolzowanie 16 bit ADC s SNR na 70 mgz 80 db LTC 2217/16/15 Linear technology

ili AD9467 200/250 msps i 73-74 db SNR na 170 -280 mgz






Radio Frequency Subsystem (RFSS)
The RF subsystem includes the processing and receiving components and the downlink group. The processing and receive group performs the following four payload functions:

amplifies, dehops, and downconverts the EHF waveform to the first intermediate frequency (IF) via the low-noise amplifier/downconverter;
receives, amplifies, downconverts, and switches the first IF to the second IF for input to one of four demodulator groups of eight channels each;
employs a differential phase shift key (DPSK) to modulate and upconvert onto a hopped SHF carrier for input to the downlink group; and
generates and distributes the hopping and fixed local oscillators for the antenna coverage subsystem, digital subsystem and RFSS.
The downlink group amplifies, filters and switches, on a hop-by-hop basis, the SHF waveform to any of the eight antennas. The SHF amplifiers are triple-redundant traveling wave tube amplifiers. Switching capability is provided by a high speed/high power beam select switch.

http://www.linear.com/product/LTC2216

LTC2217 - 16-Bit, 105Msps Low Noise ADC

http://www.linear.com/product/LTC2217

AD9467: 16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter

http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad9467/products/product.html


With the MDR payload, Milstar 6 is capable of processing data at speeds up to 1.5 megabits per second. With the LDR payload, the satellite can transmit voice and data at 75 to 2400 bits per second. After testing and systems evaluation, the $800 million Milstar 6
##################

T.e. bez NIOKR podobnij sputnik segodnja budet stoit segodnja bolee 1 mlrd $ za 1

is expected to be fully operational within two months and will aid military forces worldwide by ensuring critical information reaches its destination quickly and securely. The Milstar 6 satellite is expected to last at least ten years.

Each Milstar satellite weighs about 10,000 pounds and can be described as a "switchboard" in space, directing the traffic it receives from terminal to terminal anywhere on Earth

http://findarticles.com/p/articles/mi_m0PAA/is_2_28/ai_107699568/

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7635
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 21:23. Заголовок: http://www.electrore..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7636
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 21:30. Заголовок: David A. DeBell and ..


David A. DeBell and Thomas S. Diviney

Northrop Grumman Corp. (USA)
------------------------------------------
IF (intermediate frequency) sampling is a method of sampling the received radar waveform out of the IF channel directly, without mixing to baseband, using a single A/D converter.
-------------------------------------
The sampling rate needed is a multiple of the bandwidth of the IF filter, of the order of 3 times the -3 dB bandwidth.
--------------------------------------------------------------------------------------------------------------------------------
IF filter skirt attenuation limits aliasing effects and permits apparent undersampling of the IF frequency.

Stretch processing is the method of matching the radar's LO frequency ramp rate (linear FM) to the transmit waveform's `chirp',
in order to limit the IF bandwidth requirement to a value much less than the RF bandwidth and thus permit a lower rate of sampling.
-----------------------------------------------------------------------------------------------------------------------------------------------------------
The combination of IF sampling and stretch processing is advantageous because A/D samplers are now able to operate at adequately short sample- and-hold aperture times, for use at IF frequencies, with a good number of bits resolution, and stretch processing can use narrow IF bandwidths.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
Therefore, high range resolution can be achieved at a lower cost than with quadrature channels at baseband and dual A/D's. Added benefits are the elimination of I-Q imbalance effects, A/D DC offset effects, and the need for calibration of these effects. Some A/D saturation can also be tolerated. A Fast Fourier Transform of the real sample data set is easily converted to an inphase and quadrature output data set for further operations. The paper goes into the equations and methodology of such a radar system and delineates the hardware differences between the baseband approach and the IF sampling approach.

© 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
http://spiedigitallibrary.org/proceedings/resource/2/psisdg/2747/1/98_1?isAuthorized=no

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7637
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 21:37. Заголовок: Stretch processing r..


Stretch processing relieves the signal processor bandwidth problem by giving up all-range processing to obtain a narrow-band signal processor. If we were to use a matched filter we could look for targets over the entire waveform pulse repetition interval (PRI). With stretch processing we are limited to a range extent that is usually smaller than an uncompressed pulse width.

Thus, we couldn’t use stretch processing for search because search requires looking for targets over a large range extent, usually many pulse widths long.
---------------------------------------
We could use stretch processing for track because we already know range fairly well but want a more accurate measurement of it.
-------------------------------------------------------------------------------------------------------------------------------------------------------
We must point out that, in general, wide bandwidth waveforms, and thus the need for stretch processing, is “overkill” for tracking. Generally speaking, bandwidths of 1s to 10s of MHz are sufficient for tracking
--------------------------------------------------------------


One of the most common uses of wide bandwidth waveforms, and stretch processing, is in discrimination, where we need to distinguish individual scatterers on a target. Another use we will look at is in SAR (synthetic aperture radar). Here we only try to map a small range extent of the ground but want very good range resolution to distinguish the individual scatterers that constitute the scene.



Thus, the stretch processor encounters a SNR loss of h T   relative to the
matched filter. This means that we should be careful about using stretch
processing for range extents that are significantly longer of the transmit pulse
width. At first inspection it appears as if stretch processing could offer better
SNR than a matched filter, which would contradict the fact that the matched
filter maximizes SNR. This apparent contradiction is resolved by the stretch
processor constraint imposed by Eqution (15). Specifically, h R T     . The
constraint if Equation (42) also demonstrates another reason why stretch
processing should not be used in a search function: it would be too lossy.


We will assume base-band processing in these discussions. In practice the mixer output will be
at some intermediate frequency (IF). The signal could be brought to base-band using a
synchronous detector or, as in some modern radars, by using IF sampling (i.e. a digital receiver).
In either case, the effective ADC rate (the sample rate of the complex, digital base-band signal)
will be as derived here



Specifically, we consider a waveform with a bandwidth of 500 MHz
and a pulse width of 100 μs. We assume further that the matched filter is
matched to the target Doppler. That is, d M f  f . For the first case we consider
a typical aircraft range-rate of -150 m/s and for the second case we consider a
ballistic missile with a (extreme) range-rate of -7500 m/s. Plots of the matched
filter outputs for the two cases are shown in Figure 5 and Figure 6.

http://www.ece.uah.edu/courses/material/EE710-Merv/Stretch_11.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7638
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 21:45. Заголовок: The ARPA-Lincoln C-b..


The ARPA-Lincoln C-band Observables Radar, or
ALCOR [20], on Roi-Namur, Kwajalein Atoll, Marshall
Islands, had a wideband (512 MHz) 10-μseclong
linear-FM transmitted-pulse waveform (see the
article entitled “Wideband Radar for Ballistic Missile
Defense and Range-Doppler Imaging of Satellites,”
by William W. Camp et al., in this issue). ALCOR
was a key tool in developing discrimination techniques
for ballistic missile defense. The wide bandwidth
yielded a range resolution that could resolve individual
scatterers on reentering warhead-like objects.
This waveform was normally processed with the
STRETCH technique, which is a clever time-bandwidth
exchange process developed by the Airborne
Instrument Laboratory [21, 22].

http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radarsignalprocessing.pdf


mixed with a linear-FM chirp and the low-frequency
sideband is Fourier transformed to yield range information.
For a variety of reasons, the output bandwidth
and consequently the range window were limited.
For example, the ALCOR STRETCH processor
yielded only a thirty-meter data window. Therefore,
examination of a number of reentry objects, or the
long ionized trails or wakes behind some objects, required
a sequence of transmissions.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7639
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 21:48. Заголовок: This sequential appr..


This sequential approach was inadequate in dealing
with the challenging discrimination tasks posed
by reentry complexes, which consist not only of the
reentry vehicle, but also a large number of other objects,
including tank debris and decoys, spread out
over an extended range interval. What was needed
was a signal processor capable of performing pulse
compression over a large range interval on each pulse.
Lincoln Laboratory contracted with Hazeltine Laboratory
to develop a 512-MHz-bandwidth all-range
analog pulse compressor employing

thirty-two parallel narrowband dispersive bridged-T networks built
############################################

out of lumped components, to cover the bandwidth.
The resulting processing unit, shown in Figure 3, was
large (it filled about seven relay racks) and complex,
and it required a great deal of tweaking to yield reasonable
sidelobes.


During 1972 and 1973, Lincoln Laboratory developed
a 512-MHz-bandwidth (on a 1-GHz intermediate
frequency [IF]) 10-μsec RAC linear-FM pulse
compressor [23].

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7642
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 22:09. Заголовок: http://microelectron..


http://microelectronics.esa.int/mpd2010/day2/e2v_presentation.pdf

EV10AS180A new European 10-bit 1.5GSPS ADC
for Space applications -TRP ESA A05528

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7644
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 22:21. Заголовок: http://www.intersil...

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7645
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 23:33. Заголовок: Waveform Variations ..


Waveform Variations by Mode.Although the specific waveform is hard to pre-

dict, typical waveform variations can be tabulated based on observed behavior of a number of existing A-S radar systems. Table 5.1 shows the range of parameters that can be observed as a function of radar mode. The parameter ranges listed are PRF, pulse width, duty cycle, pulse compression ratio, independent frequency looks, pulses per coherent processing interval (CPI), transmitted bandwidth, and total pulses in a Time-On-Target (TOT).

Obviously, most radars do not contain all of this variation, but modes exist in many fighter aircraft, which represent a good fraction of the parameter range. Most fighter radars are frequency agile since they will be operated in close proximity to similar or identical systems. The frequency usually changes in a carefully controlled, completely coherent manner during a CPI.8 This can be a weakness for certain kinds of jamming since the phase and frequency of the next pulse is predictable. Sometimes to counter- act this weakness, the frequency sequence is pseudorandom from a predetermined set with known autocorrelation properties, for example, Frank, Costas, Viterbi, P codes.16 A major difficulty with complex wideband frequency coding is that the phase shift- ers in a phase scanned array must be changed on an intra- or inter-pulse basis greatly complicating beam steering control and absolute T/R channel phase delay. Another challenge is minimizing power supply phase pulling when PRFs and pulsewidths vary over more than 100:1 range. MFAR systems not only have a wide variation in PRF and pulsewidth but also usually exhibit large instant and total bandwidth. Coupled with the large bandwidth is the requirement for long coherent integration times. This requirement naturally leads to extreme stability master oscillators and ultra low-noise synthesizers.44

http://www.scribd.com/doc/17533868/Chapter-5-Multi-Functional-Radar-Systems-for-Fighter-Aircraft

5.12

MULTIFUNCTIONAL RADAR SYSTEMS FOR FIGHTER AIRCRAFT

1.Real beam map 0.5 -10 mgz
2.Doppler beam sharp 5-25 mgz
3. SAR 10 -500 mgz
4.A-S range 1-50 mgz
5.PVU 1-10 mgz
6.TF/TA 3-15 mgz
7.Sea surface search 0.2 -500 mgz
8.Inverse SAR 5-100 mgz
9. GMTI 0.5-15 mgz
10.Fixed target track 1-50 mgz
11.GMTT 0.5 -15 mgz
12.Sea Surface track 0.2-10 mgz
13.Hi power Jam 1-100 mgz
14.CAl/A.G.C 1-500 mgz
15A-S data link 0.5-250 mgz

T.e dlja bolschinstwa funkzij dostatochen AD9467 16 bit ADC 250 msps s Fin do 300 mgz
Realnij dinamicheskij diapazon -74 db, ENOB -12 bit

250 msps eto polosa 125 mgz



Dlja RLS tipa MMW,Don-2N,Haystack s polosoj signala po 2000 mgz -8000 mgz

mozno rassmatriwat 12 bit (ENOB -9.3 bita) National s 3.6 gigasample(sdwoennij) i Fin do 1.5 ghz ,
E2V 12 bit ,1.5 gsps

ili 8 bit maxtek 20 gigasamples ( ENOB 6.6 bit do 5 ghz)

T.e. dinamicheskij diapazon nize , polosa signala wische


From an MFAR point of view, the important parameters are volumetric densitieshigh enough to support less than 1/2 wavelength spacing; radiated power densities highenough to support 4 watts per sq. cm.; radiated-to-prime-power efficiencies greaterthan 25%; bandwidth of several GHz on transmit and almost twice that bandwidth onreceive



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7646
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 30.12.11 23:41. Заголовок: Some modes are used ..


Some modes are used for several operational categories, such as real beam map(RBM), fixed target track (FTT), doppler beam sharpening (DBS), and synthetic aper-ture radar (SAR), used not only for navigation but also for acquisition and weapondelivery to fixed targets.38–43SAR may also be used to detect targets in earthworks ortrenches covered with canvas and a small amount of dirt, which are invisible to EOor IR sensors. Similarly, air-to-surface ranging (A-S Range) and precision velocityupdate (PVU) may be used for weapon support to improve delivery accuracy as wellas navigation.7,9Terrain following and terrain avoidance (TF/TA) is used for navigation at verylow altitudes or in mountainous terrain. Sea surface search (SSS), sea surface track (SST), and inverse synthetic aperture radar (ISAR), which will be described later inthe chapter, are used primarily for the acquisition and recognition of ship targets.Ground moving target indication (GMTI) and ground moving target tracking (GMTT)are used primarily for the acquisition and recognition of surface vehicle targets butalso for recognizing large movements of soldiers and materials in a battle-space. Highpower jamming (HiPwrJam) is a countermeasure available from AESAs due to theirnatural broadband, beam agile, high gain, and high power attributes

AESAs also allowlong range air-to-surface data links (A-S Data Link) through the radar primarily formap imagery. Because there may be thousands of wavelengths and a gain of millionsthrough a radar, automatic gain control and calibration (AGC/CAL) is usually requiredfairly often. Modes optimized for this function are invoked throughout a mission

http://www.scribd.com/doc/17533868/Chapter-5-Multi-Functional-Radar-Systems-for-Fighter-Aircraft

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7648
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 15:58. Заголовок: ALCOR C-Band ,500 mg..


ALCOR C-Band ,500 mgz BMDO radar

During 1972 and 1973, Lincoln Laboratory devel-oped a 512-MHz-bandwidth (on a 1-GHz interme-diate frequency [IF])

http://www.scribd.com/doc/47868505/Radar-Signal-Processing-by-Purdy-Blankenship-Muehe-Rader-Stern-Williamson

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7657
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 19:29. Заголовок: http://dsp-book.naro..


http://dsp-book.narod.ru/skolnik/7913X_15b.pdf

It is recommended that an A/D be evaluated with large signals at all
frequencies within the receiver passband to establish that the quantization noise is
as low as theoretically expected and that no spurious signals are produced.

http://dsp-book.narod.ru/skolnik/7913X_15b.pdf
Jitter in the sampling time in the A/D converter also limits MTI performance.
If pulse compression is done prior to the A/D or if there is no pulse compression,
this limit is


TABLE 15.5 Typical Limitation on / Due to A/D Quantization

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7658
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 19:36. Заголовок: http://dsp-book.naro..


http://dsp-book.narod.ru/skolnik/7913X_03b.pdf

3.11 ANALOG-TO-DIGITAL CONVERTER
Applications. Analog-to-digital converters find numerous applications in
modern radar systems. The trend toward digital processing of radar data has
resulted in a demand for fast converters that are able to convert data in real time.
Digital MTI is an example of a technique requiring such high-speed converters.
Here, the synchronous-detector output is sampled at a rate not less than the receiver
bandwidth, and the digital result is stored in a large digital memory. Data is read
from the memory to allow comparison with corresponding returns from subsequent
radar "looks." The flexibility of this method has permitted MTI velocity response
characteristics previously unobtainable with analog memory devices.
Many tracking radars use a converter to encode the echo in the tracking gate.
In this case, a general-purpose computer provides all computations required to
track a target and to provide range and velocity outputs. Precise data-smoothing
and stabilizing characteristics are provided by the computer.
High-speed converters have been used to encode the height information from
a stacked-beam radar. This permits an arithmetic interpolation of target position.
Errors following conversion are, of course, eliminated.
Another application of converters is in the field of digital recording. This is
used where vast quantities of data are to be analyzed or where an isolated event
is to be analyzed. In this case, the encoded data is stored on magnetic tape. The
results are then analyzed in nonreal time with arithmetic accuracy.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7659
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 19:37. Заголовок: Performance Characte..


Performance Characteristics
Signal Bandwidth. The digital data used by the terminal equipment is always
sampled. The bandwidth of this "digital signal" is limited to half the sampling
frequency.
Resolution. The resolution of a converter is determined by the number of
bits. For an TV-bit converter, the resolution is Emax/(2^ - 1) if the converter is
truly monotonic, that is, if its response to an analog ramp is a uniform progression
of binary numbers. This characteristic is usually realized with a slowly
changing analog input but must be verified under pulsed conditions.
Dynamic Range. If the A/D converter is sampling the two components of the
echo vector (/ and Q), each component contains half of the noise power and up to
100 percent of the signal power. The dynamic range is the maximum IF signalto-
noise ratio which can be handled by the A/D converter without saturating at
any phase condition.
Dynamic range (dB) = 67V - 9 - 20 log (o/LSB) (3.28)
where N = number of bits including sign
cr = rms noise in / or Q
LSB = least-significant-bit voltage

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7660
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 19:38. Заголовок: numbers introduces a..


numbers introduces an added random error which can be considered as an additional
source of noise, requiring an increase in echo strength to achieve the
desired detection probability if false-alarm probability is maintained constant.
Quantization loss (dB) = 10 log [l + ( M °" - LSB (3-29)
L \ CT / J
Sampling. When the signal bandwidth is so great that the analog voltage
changes significantly from sample to sample, the instantaneous signal may become
distorted by the sampling process.15 A slewing error results when the exponential
charging is incomplete. An entirely separate lag error results from changes in signal
amplitude during the sampling interval. Current flows in the storage capacitor, causing
an IR drop, which is still present when the switch is opened.
An additional error is introduced by the finite opening time of the switch. The
signal tends to be averaged over this interval, and the sampled voltage does not
correspond exactly to the voltage at the instant when the switch starts to open.
The time required to open the switch is sometimes called the aperture time.
Design data specifying the slewing and lag errors is presented in Fig. 3.21. Practical
circuits having RC time constants of 3 ns and sampling intervals of 50 ns have
been used in high-speed A/D conversion. The resultant slewing error is seen to be
less than 0.001 percent, and, at a signal frequency of 0.5 MHz, the lag error is 0.46
percent. It should be emphasized that large sampling errors are not always fatal in a
radar system. For example, in an MTI radar the error will repeat from one interpulse
period to the next in stationary clutter, and it is therefore removed by subtraction in
the canceler.

http://dsp-book.narod.ru/skolnik/7913X_03b.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7661
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 23:13. Заголовок: http://www.astro.cal..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7662
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 23:33. Заголовок: When Oversampling an..


When Oversampling and
Averaging Will Work
The effectiveness of oversampling and averaging
depends on the characteristics of the dominant
noise sources. The key requirement is that
the noise can be modeled as white noise.
Please see Appendix B for a discussion on the
characteristics of noise that will benefit from
oversampling techniques. Key points to consider
are [2] [3]:
• The noise must approximate white noise
with uniform power spectral density over
the frequency band of interest.
• The noise amplitude must be sufficient to
cause the input signal to change randomly
from sample to sample by amounts comparable
to at least the distance between two
adjacent codes (i.e.,1 LSB - please see
Equation 5 in Appendix A).
• The input signal can be represented as a
random variable that has equal probability
of existing at any value between two adjacent
ADC codes.
Note: Oversampling and averaging techniques
will not compensate for ADC integral non-linearity
(INL).

http://www.eetindia.co.in/ARTICLES/2003JUN/A/2003JUN19_AMD_PD_AN.PDF?SOURCES=DOWNLOAD


Noise that is correlated or cannot be modeled
as white noise (such as noise in systems with
feedback) will not benefit from oversampling
techniques. Additionally,if the quantization
noise power is greater than that of natural
white noise (e.g.,ther mal noise),then oversampling
oversampling
and averaging will not be effective.
This is often the case in lower resolution
ADC’s. The majority of applications using 12-
bit ADC’s can benefit from oversampling and
averaging.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7663
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 31.12.11 23:42. Заголовок: http://www.eetimes.c..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7665
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.01.12 19:16. Заголовок: Filter-bank Design f..


Filter-bank Design for Sub-band ADC
Arka Majumdar, Sandipan Kundu, Anindya Sundar Dhar

http://www.stanford.edu/~arkam/letter_subband.pdf

Performance of subband HFB-based A/D converters
Davud Asemani, Jacques Oksman
Department of Signal Processing and Electronic Systems
Ecole Sup´erieure d’Electricit´e (Supelec)
91192, Gif sur Yvette, France
Email: firstname.lastname@supelec.fr

http://hal.archives-ouvertes.fr/docs/00/26/11/64/PDF/IEEE_ISSPa_2007_Sharjah.pdf


Subband architecture for Hybrid Filter Bank
A/D converters
Davud Asemani, Member, IEEE, Jacques Oksman, and Pierre Duhamel, Fellow, IEEE

http://hal.archives-ouvertes.fr/docs/00/29/12/41/PDF/Asemani_Subband_articel_two_columns.pdf


An Oversampled Channelized UWB Receiver
Lei Feng, Won Namgoong
Department of Electrical Engineering
University of Southern California
leifeng@usc.edu, namgoong@usc.edu

http://www.stanford.edu/~arkam/btech_thesis_arka

Filter-Bank Design by Transconductor for Sub-Band
ADC
by
Arka Majumdar, (03EC1024)
Under the guidance of
Prof. Anindya Sundar Dhar

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7666
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.01.12 19:41. Заголовок: Two-Dimensional Spat..


Two-Dimensional Spatio-Temporal Signal
Processing for Dispersion Compensation in
Time-Stretched ADC
Alireza Tarighat, Member, IEEE, Shalabh Gupta, Student Member, IEEE, Ali H. Sayed, Fellow, IEEE,
and Bahram Jalali, Fellow, IEEE

http://www.ee.ucla.edu/~tarighat/pdf/jlt_07_ts_adc.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7667
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.01.12 19:45. Заголовок: July 12, 2011 New U..


July 12, 2011

New U.S Export Regulations Reclassify Linear Technology’s 12-bit 200Msps, 14-bit 125Msps and 16-bit 10Msps ADCs for Export to China & Russia

MILPITAS, CA – July 12, 2011 – Linear Technology Corporation is pleased to announce new Export Classification Control Numbers (ECCN) for their families of high performance, high speed ADCs with sample rates of up to 200Msps at 12-bit, 125Msps at 14-bits and 10Msps at 16-bit resolutions. New U.S. Export Administration Regulations have allowed these devices to be reclassified from ECCN# 3A001 to the less stringent ECCN# 3A991. This new classification provides engineers with the capability to use Linear ADCs to develop and export high performance products that can compete freely on the world market.

Linear Technology offers a wide selection of high performance, low power ADCs that maximize desired system performance. For high performance communications applications, the LTC2207-14 14-bit 105Msps ADC achieves 77.3dB SNR and 98dB SFDR. At 16-bit 10Msps, the LTC2202’s 81.6dB SNR and 100dB SFDR performance is ideal for CCD (charge-coupled device) and infrared cameras, x-ray and cytometry/spectroscopy applications.

For the lowest power, designers in China and Russia can now use 14-bit 25Msps to 125Msps solutions such as the dual LTC2145-14 ADC family with parallel outputs, or LTC2268-14 dual ADCs and LTC2175-14 quad ADCs with serial LVDS outputs, which dissipate approximately 1mW per mega sample per second from a 1.8V supply. These ADCs offer unparalleled performance at ultralow power consumption, maintaining portability in such applications as handheld test and instrumentation, radar/LIDAR, medical imaging, PET/SPECT scanners, military radios, smart antenna systems and a range of low-power communication systems.

In addition to a complete portfolio of high performance ADCs, Linear Technology also offers a wide range of RF mixers, including the LTC5569 and LTC5590/91/92/93 family of dual high dynamic range low power mixers, direct conversion modulators and demodulators, VGAs, filters, power detectors, low-distortion amplifiers and ADC drivers to complete the receive signal chain for next-generation wireless base stations and high performance radios. Linear’s customers can depend on a highly skilled team of applications engineers with a deep knowledge of signal chain design to provide design guidance and technical support to ensure a short design cycle and faster time to market.

The ADC product offering can be found at: www.linear.com/hsadc_nolicense.

About Linear Technology

Linear Technology Corporation, a member of the S&P 500, has been designing, manufacturing and marketing a broad line of high performance analog integrated circuits for major companies worldwide for three decades. The Company's products provide an essential bridge between our analog world and the digital electronics in communications, networking, industrial, automotive, computer, medical, instrumentation, consumer, and military and aerospace systems. Linear Technology produces power management, data conversion, signal conditioning, RF and interface ICs, and µModule® subsystems.

LT, LTC, LTM, µModule, and are registered trademarks of Linear Technology Corp. All other trademarks are the property of their respective owners.


http://www.eejournal.com/archives/news/20110712_04/

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7668
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 01.01.12 21:46. Заголовок: Neobxodimo razrabota..


Neobxodimo razrabotat Rossijskuju linejku 16-14-12-10 bit AZP /ZAP

Eto ne tak dorogo ,wsja texnologija dlja etogo dawno est
(topologija wazna)

Video -

http://www.niip.ru/index.php?option=com_content&view=category&layout=blog&id=18&Itemid=23

В настоящее время НИИП является головным предприятием по разработке интегрированной радиоэлектронной системы на основе активных фазированных антенных решёток X- и L- диапазонов для истребителя пятого поколения – эта разработка является основным приоритетом института на ближайшие годы.

http://www.niip.ru/index.php?option=com_content&view=article&id=1&Itemid=6

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7672
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.01.12 21:26. Заголовок: http://www.tekmicro...


http://www.tekmicro.com/PDFs/MuPuRF_Radar.pdf

1ghz polosaX-band /centr 9.8 ghz) 150 mm razr .AZP

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7673
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 02.01.12 21:46. Заголовок: http://poulton.net/p..


http://poulton.net/papers.public/2010_cicc_GHz_ADCs.pdf

GHz ADCs: From Exotic to Mainstream
Ken Poulton
Agilent Technologies
Santa Clara, California

Segodnjaserijno wipuskajutsja

10 bit 2.5 GSPB E2V

12 bit 1.5 GSPS E2V
12 bit sdwoennij National 1.8 gsps ( taqkze prodaetsja TI)
12 bit odinarnij TI 1 gsps (neskolko let)

y wsex 12 bitnix SNR ne lutche 57-58 db na 1ghz -1.3ghz
pri GSPS

dlaj srawnenija y 16 bitnix na 70 ghz pri polose signala 20 mhz
i skorosti 100 -125 msps

SNR - 80 DB
############


na 170 -270 mhz pri 200-2500 msps y 16 bit AD9467

SNR 76-73 db

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7674
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 00:14. Заголовок: Perwij 12 bit GSPS..


Perwij 12 bit GSPS 24 mesjaca nazad

http://www.electronicsweekly.com/Articles/28/10/2009/47279/ti-unveils-industrys-first-12bit-1gsamples-adc.htm

TI unveils industry's first 12bit 1Gsample/s ADC
Steve Bush
Wednesday 28 October 2009 14:01
Texas Instruments has unveiled industry's first 12bit 1Gsample/s ADC, the ADS5400. A buffered front-end simplifies external circuit design, and fast sampling means up to four can be used together for 4Gsample/s and 2GHz bandwidth.

"The only devices that come close are also ours, and they sample at 500Msample/s," TI spokesman Heinz-Peter Beckemeyer told Electronics Weekly.

Test and measurement, radar, and signal jamming are the target applications,
-------------------------------------------------------------------------------------------

rather than phones or infrastructure.

The monolithic devices, made on the TI's BiCom3 silicon-on-insulator process, are $775 in 100 unit quantities.

Signal to noise ratio (S/N) is 57dB and "almost flat from DC to 2GHz," said Beckemeyer.

Like its 500Msample/s ADS5463 predecessor, architecturally the 5400 is a pipeline converter.
-------------------------------------------------------------------------------------------------------------
12 bit E2V i National folding interpolating


National posle 23 sent .2011 prinadlezit TI
----------------------------------------------------
"You design the individual stages according to what you optimise: signal to noise, or power," said Beckemeyer. "Our challenge was to keep power in the 2.0-2.5W range. The resulting S/N is 10dB better than anything you will find on the market."

Sampling with a single 5400 at 1GHz means DC to 500MHz coverage. Power is around 2.2W.
------------------------------------------------------------------------------------------------------------

Preceded by bandpass filter, the device can also be used to under-sample, covering 500MHz-1GHz, 1.0-1.5GHz, or 1.5-2.0GHz.

Spurious-free dynamic range (SFDR) is, according to Beckemeyer, 77-78dB at DC, 72-73dB at 1GHz, and in the 60dB range at 2GHz.

Sample-and-hold and analogue bandwidth are sufficient to cover DC-2GHz in one go by running four converters in parallel. On-chip hardware allows two or four devices to be interleaved.
------------------------------------------------

"Generally interleaving will generate spurs in the spectrum.
########################################

This converter has gain, phase and amplitude adjustments to remove the spurs," said Beckemeyer.

These adjustments can also be used for balancing ADCs in an I/Q receiver

Other features include user-selectable single or dual-bus LVDS outputs, allowing a choice between I/O speed and pin-count.

Operation is specified from -40 to 85°C, and the package is a 16x16mm thermally-enhanced,100 pin TQFP.



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7687
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 18:17. Заголовок: 1.Irbis-E polosa si..


1.Irbis-E polosa signala w rezime SAR 250 mhz ,smotri 1 rolik

razr. sposobnost 1 metr i wische ... eto 250 mhz
http://www.niip.ru/index.php?option=com_content&view=category&layout=blog&id=18&Itemid=23

2. 2500 mhz 100 mm razreschenie

http://www.sandia.gov/RADAR/imageryka.html

kollekzija image ot 35 ghz synthetic apperture radar razr.sposobnost' 4 inches -10 sm,100 millimetr

Contact:

To send feedback or request information about the contents of Sandia National Laboratories' synthetic aperture radar website, please contact:

Nikki L. Angus
Synthetic Aperture Radar Website Owner
Sandia National Laboratories
Albuquerque, NM 87185-1330
(505) 844-7776 (Phone)
(505) 845-5491 (Fax)
nlangus@sandia.gov


http://www.sandia.gov/RADAR/movies.html

kollekzija video s SAR Ku band i raz sposb 300 mm


3.Waveform Variations by Mode.Although the specific waveform is hard to pre-

dict, typical waveform variations can be tabulated based on observed behavior of a number of existing A-S radar systems. Table 5.1 shows the range of parameters that can be observed as a function of radar mode. The parameter ranges listed are PRF, pulse width, duty cycle, pulse compression ratio, independent frequency looks, pulses per coherent processing interval (CPI), transmitted bandwidth, and total pulses in a Time-On-Target (TOT).

Obviously, most radars do not contain all of this variation, but modes exist in many fighter aircraft, which represent a good fraction of the parameter range. Most fighter radars are frequency agile since they will be operated in close proximity to similar or identical systems. The frequency usually changes in a carefully controlled, completely coherent manner during a CPI.8 This can be a weakness for certain kinds of jamming since the phase and frequency of the next pulse is predictable. Sometimes to counter- act this weakness, the frequency sequence is pseudorandom from a predetermined set with known autocorrelation properties, for example, Frank, Costas, Viterbi, P codes.16 A major difficulty with complex wideband frequency coding is that the phase shift- ers in a phase scanned array must be changed on an intra- or inter-pulse basis greatly complicating beam steering control and absolute T/R channel phase delay. Another challenge is minimizing power supply phase pulling when PRFs and pulsewidths vary over more than 100:1 range. MFAR systems not only have a wide variation in PRF and pulsewidth but also usually exhibit large instant and total bandwidth. Coupled with the large bandwidth is the requirement for long coherent integration times. This requirement naturally leads to extreme stability master oscillators and ultra low-noise synthesizers.44

http://www.scribd.com/doc/17533868/Chapter-5-Multi-Functional-Radar-Systems-for-Fighter-Aircraft

5.12

MULTIFUNCTIONAL RADAR SYSTEMS FOR FIGHTER AIRCRAFT

1.Real beam map 0.5 -10 mgz
2.Doppler beam sharp 5-25 mgz
3. SAR 10 -500 mgz
4.A-S range 1-50 mgz
5.PVU 1-10 mgz
6.TF/TA 3-15 mgz
7.Sea surface search 0.2 -500 mgz
8.Inverse SAR 5-100 mgz
9. GMTI 0.5-15 mgz
10.Fixed target track 1-50 mgz
11.GMTT 0.5 -15 mgz
12.Sea Surface track 0.2-10 mgz
13.Hi power Jam 1-100 mgz
14.CAl/A.G.C 1-500 mgz
15A-S data link 0.5-250 mgz

T.e dlja bolschinstwa funkzij dostatochen AD9467 16 bit ADC 250 msps s Fin do 300 mgz
Realnij dinamicheskij diapazon -74 db, ENOB -12 bit

250 msps eto polosa 125 mgz



Dlja RLS tipa MMW,Don-2N,Haystack s polosoj signala po 2000 mgz -8000 mgz

mozno rassmatriwat 12 bit (ENOB -9.3 bita) National s 3.6 gigasample(sdwoennij) i Fin do 1.5 ghz ,
E2V 12 bit ,1.5 gsps

ili 8 bit maxtek 20 gigasamples ( ENOB 6.6 bit do 5 ghz)

T.e. dinamicheskij diapazon nize , polosa signala wische


From an MFAR point of view, the important parameters are volumetric densitieshigh enough to support less than 1/2 wavelength spacing; radiated power densities highenough to support 4 watts per sq. cm.; radiated-to-prime-power efficiencies greaterthan 25%; bandwidth of several GHz on transmit and almost twice that bandwidth onreceive







Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7701
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 20:55. Заголовок: soobrazenija po razr..


soobrazenija po razrabotke 10 bit 2.2 gsps ADC
( seg .yrowen ot tex ze awtorow 12 bit 1.5 gsps)


http://convergencepromotions.com/atmel/v_6/pdf/v_6_pg-43-48.pdf

http://convergencepromotions.com/atmel/v_6/pdf/v_6_pg-43-48.pdf

For operation at Nyquist (Fin~Fs/2) and above, the
clock phase noise (also called jitter) has direct impact
on SNR. Jitter can be split in 2 components: external jitter
(due to the sources used, or potential board routing
issues), and internal jitter (generated in the ADC by
thermal noise on clock path, coupling with other signals,
or poor power supply rejection). Therefore internal
jitter is also a very important parameter of the ADC.
Parameters to consider for a high speed ADC are therefore:
THD, SFDR, IMD (multitone), SNR, Noise Power
Ratio (for broadband application), ADC added Jitter (for
2nd Nyquist application).


3.2 Quantifier
Quantifier structure choice is a key issue in the design
of an ADC, specially when we are looking simultaneously
for speed, accuracy and power efficiency.
Pipeline and sub-ranging architectures are discarded,
because for this sampling range they are not relevant,
especially regarding B.E.R (Bit Error Rate) issue.
--------------------------------------------------
No
TI 1 gsps ,12 bit ADS5400 - 3 state pipeline
14 bit ,400 msps ADS5474 -pipeline



A full flash architecture is also not acceptable because
of loading effect caused at T/H output due to too many
comparators (210+1), and also because of power
spillage that this architecture would imply.
Finally we retained a successively folded and interpolated
architecture which offers the best trade-off
between speed, accuracy and power dissipation.
The MSBs are generated by a coarse cycle pointer, and
are corrected in accordance with LSB’s transition in the
logic part. Gain adjustment is made by controlling the
bias of the reference resistor chain.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7702
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 21:20. Заголовок: 3 GS/s S-Band 10 Bit..


3 GS/s S-Band 10 Bit ADC and 12 Bit DAC on SiGeC Technology

http://see.conference-services.net/resources/253/1452/pdf/RADAR2009_0293.pdf


D. ADC Characterization Results
1) ADC Single Tone FFT Computation at 3 GS/s in 1st, 2nd
and 3rd Nyquist zones
At 3 GS/s in the 1st Nyquist (Fin=1495MHz, -1dBFS), an
ENOB of 8.1 Bit and an SFDR of 59 dBc is achieved (Fig. 3).
In the 2nd Nyquist (Fin=2995MHz, -3 dBFS), an ENOB of 8.0
Bit is still achieved, with an SFDR performance of 58 dBc
(Fig. 4). With Fin=3995MHz (-3 dBFS), corresponding to the
S_Band upper limit, the ENOB is still 7.7 Bit, with an SFDR
of 55 dBc, and the SNR is 49.5 dBFS. The SNR roll off versus
input frequency is related to the voltage noise induced by the
120 fs rms internal sampling clock jitter of the ADC. The
large linearity roll off over frequency is related to the large
signal dynamics of the front-end Track and Hold, which
improves for smaller signals.
The 0dBFS ADC Full Scale reference voltage span is 500 mV,
and Full Scale input power is -2dBm if single-ended driven in
50 Щ and -5 dBm if differentially driven in 100 Щ termination.
At 3 GS/s and Fin = 3 GHz, an SNR of 51 dB is achieved,
leading to an FFT noise floor of: SNR + 10log(N/2) =
51dB+10log(16384)=93dB per 32K FFT bin width.
The normalized noise floor in dBc/Hz at Fs=3 GS/s is 51 dB +
10log(Fs/2)=142.7dBc/Hz. Since ADC Full Scale differential
input power is -5dBm, the normalized (per/Herz) Noise floor
is -5dBm-143dB = -148 dBm/Herz. The ADC total noise
power includes the input referred thermal noise and the
voltage noise induced by time jitter. Therefore the contribution
of the ADC to overall system noise figure can be calculated.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7703
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 21:47. Заголовок: http://www.triquint...

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7705
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 03.01.12 23:46. Заголовок: Software Defined Mul..


Software Defined Multi-Channel Radar Receivers for X-band Radars
Missile Defense Agency - STTR FY2009B - Topic MDA09-T003
Opens: August 24, 2009 - Closes: September 23, 2009
--------------------------------------------------------------------------------


MDA09-T003 TITLE: Software Defined Multi-Channel Radar Receivers for X-band Radars

TECHNOLOGY AREAS: Sensors, Electronics

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 3.5.b.(7) of the solicitation.

OBJECTIVE: Investigate and develop Software-Defined Multi-channel Receivers to enhance X-Band radar systems performance.

DESCRIPTION: Future X-Band radar systems will employ low-cost antenna array technology and digital beamforming architecture that requires multiple receiver channels. Demonstrating the utility of software defined, scalable multi-channel receiver technology that reduces cost, weight, and size while enhancing radar system flexibility and performance is the optimal goal of this research. With recent development of the state-of-the-art receiver technology coupled with high-speed computing devices, multi-channel receiver (consisting of up to 100s of channels) controlled by software may possible. The advantage of software defined multi-channel receiver is that the reconfiguration of hardware components can be done relatively quickly. The benefit of employing software defined receiver is that the implementation would rely heavily on the digital signal processing algorithm and requiring fewer hardware components. Subsequent benefits such as improvement in dynamic range, quadrature coherency, reliability, and low cost. The primary objective of this research is to investigate the feasibility of software-defined technology that offers the potential of a low-cost robust multi-channel receiver solution. The multi-channel receive takes X-Band RF signals and outputs digitized In-phase and Quadrature (I&Q) data. The receiver should cover a 25-40% operating bandwidth centered at X-Band. The receiver should cover a tunable instantaneous bandwidth of 1GHz (goal), 400MHz (threshold), with an instantaneous dynamic range of 52+ dB. The control interfaces should utilize Open System Architecture to the maximum extend possible for ease of integration within the radar systems.

PHASE I: Investigate the feasibility, technical issues, and risks of developing software-defined multi-channel receiver at X-Band. Conduct computer modeling and demonstrate proof of concept implementation. The research will result in a detail report on how the software defined multi-channel receiver would be built to meet the performance while attaining the low cost and small size objective.

PHASE II: Demonstrate the operation of the developed prototype software defined multi-channel receiver using low-cost components. Validate performance, cost and reliability benefits to be achieved through a prototype device. Quatify the benefits of digital signal processing implemention and approach and identify commercial radar application opportunity.

PHASE III: Design and validate the software defined multi-channel receiver prototype developed in Phase II for X-Band radar systems for military and commercial applications. Work closely with missile defense agency (MDA) to target potential technology insertion and integration into MDA ballistic missile defense systems.

COMMERCIALIZATION: The proposed technology has a number of related commercial applications in radio frequency (RF) sensors. Commercial radar systems, commercial RF communications systems that require software defined multi-channel receiver.

REFERENCES:
1. J. H. Reed, "Software Radio A Modern Approach to Radio Engineering", Prentice Hall Communications Engineering and Emerging Technologies Series, 2002.

2. R. Seal, J. Urbina, M. Sulzer, S. Gonzalez, N. Aponte, "Design of an FPGA-based radar controller", National Radio Science Meeting, Boulder, CO, Jan 2008.

3. J. Mitola, "Cognitive radio: an integrated agent architecture for software defined radio", Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2000.

4. T. Quach et al, "X-Band Receiver Front-End Chip in Silicon Germanium Technology", IEEE 8th Topical Meeting on Silicon for RF Systems, Jan 2008.

5. R. Dragenmeister et al, "Multi-Chip-Module Based X-Band Receiver Utilizing Silicon Germanium MMICs", GOMACTECH 2008, Mar. 2008.

KEYWORDS: Antenna Array, Multi-channel Receiver, Analog to digital converter, Radar receiver, Digital Beamforming, phased array radar.

TPOC: Dr. Seng Hong
Phone: 937.255.3802 X3449
Fax: 703.882.6350
Email: seng.hong@wpafb.af.mil



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7712
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 00:25. Заголовок: For example, look at..


For
example, look at US PCS of 5 MHz. If the lowest frequency
were translated to 1 MHz, the highest frequency of the band
would be at 6 MHz. However, if a carrier were operational at
the bottom of the band (1 MHz IF frequency), the second and
third harmonic would fall at 2 and 3 MHz respectively, right in
the middle of the band. These harmonics definitely can disrupt
calls in a wide dynamic such as GSM or AMPS.
Now consider the case where the bottom frequency of the band
was translated to 5.1 MHz instead of 1 MHz. The upper
frequency would align with 10.1 MHz. Now a quick look at the
harmonics shows that the second harmonic of 5.1 MHz would
fall at 10.2 MHz, outside the band of interest. The higher the
IF frequency, the more spread out the harmonics and signals of
interest become. In a practical sense, the IF frequency should
be as high as the ADC could reasonably process.

http://www.analog.com/static/imported-files/tech_articles/371982266wideband.pdf

t.e. 260-510 mhz IF/Pch dlaj 250 mhz polosi Irbis-E

510-1010 mhz dlja 500 mhz polosi NIIP AFAR

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7714
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 01:09. Заголовок: ALCOR C-Band ,500 mg..


ALCOR C-Band ,500 mgz BMDO radar

During 1972 and 1973, Lincoln Laboratory devel-oped a 512-MHz-bandwidth (on a 1-GHz interme-diate frequency [IF])

http://www.scribd.com/doc/47868505/Radar-Signal-Processing-by-Purdy-Blankenship-Muehe-Rader-Stern-Williamson
----------------------------------------------------------------------------------------------------------------
Tolko 12- bitnie AZP .. .. eto znachit chto SNR wsego 56-57 db
A SFDR 65-66 dbfs


T.e. na 23-25 db xuze chem y 16 -bitnix

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7715
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 20:31. Заголовок: Sowetskie AZP i ZAP ..


Sowetskie AZP i ZAP

http://offtop.ru/dustyattic/v1_702988_all_.php?of13639=1gv21b15gos0bjk6tn5nkl95i1

Ne nado smejatsja ...

W 35 ghz MMW radar Lincoln laboratory s 13.7 metr aantennoj i polosoj signala 1000 mhz(potom 2000 mhz)

w nachale 90 posle mnogokratnix preobre. chastoti ispolzowalsja strech processing

s 10 bit 20 msps AZP w üpolose 2.5 mhz-7.5 mhz

Sowetskie AZP imeli te ze dannie ( pri nizkom wixode godnix)

koipja s linka

Уважаемый, Carbon, хотел бы внести небольшое уточнение. Приведенный Вами на фото АЦП 1107ПВ3Б из "Венты" имел частоту преобразования 50МГц, а вот 1107ПВ3А имел уже 100МГц.
С такой же частотой 100МГц 1107ПВ4 (Тема "Веда") имел разрядность 8. И уже на излете советской власти (как писал уважаемый Georg)появился лучший советский АЦП 1107ПВ6 - 10р 15 МГц.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7716
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 20:39. Заголовок: http://ns1.elcp.ru/d..


http://ns1.elcp.ru/developer-r/news/company/2113/doc/45882/

Разработаны отечественные 14-разрядные 20 МГц АЦП

В ГУП НПЦ «Элвис» разработаны отечественные микросхемы двухканального аналого-цифрового контроллера ввода сигналов 9008ВГ1Я. Приборы могут быть использованы в качестве обычного двухканального АЦП, а также для замены AD9225, AD9240, ADS850 (Analog Devices), LTC2246, LTC2226 (Linear Technology).
Микросхемы выполнены в виде многокристального модуля и содержат два кристалла 14-разрядных АЦП конвейерного типа с частотой оцифровки до 20 МГц и цифровой контроллер. Кристаллы изготовлены по 0,25 мкм технологии и размещены в 192-выводном корпусе BGA размером 17х17 мм. Диапазон рабочих температур от -60 до 85°C.

9008ВГ1Я оцифровывает внешние сигналы/изображения, хранит их в буферной памяти типа FIFO и выводит информационный поток через интерфейс подключения к порту памяти (MPORT) процессоров серии «Мультикор», а также совместимых по интерфейсу ИС для дальнейшей обработки процессором.

Кроме того, цифровой контроллер позволяет выводить данные непосредственно с выходов АЦП (минуя буферную память и интерфейс MPORT), например, в 1288ХК1Т (Digital Down Converter).

Практическое применение микросхем возможно в таких областях как системы ввода изображения, в том числе системы тепловидения; радиосвязь; радиолокация; гидроакустические системы; измерительная техника; системы сбора данных; системы управления; системы промышленного контроля; и в других устройствах, позволяющих принимать и обрабатывать отсчеты АЦП в реальном времени.

Макетные образцы микросхем 9008ВГ1Я имеют маркировку 1892ВГ1Я или 2008ВГ1Я.

Основные характеристики

тактовая частота АЦП 20 МГц;
частота входного сигнала до 140 МГц;
буферная память типа FIFO глубиной 4096х2 отсчетов;
возможность непосредственного доступа к встроенным АЦП;
интерфейс памяти, позволяющий имитировать режимы работы SRAM, SDRAM;
32/16-разрядный режимы работы интерфейса памяти MPORT с частотой до 100 МГц;
возможность объединения микросхем в группы для совместной работы на одной выходной шине данных - до 8 микросхем в составе двух групп;
пиковое потребление 800 мВт;
питание: цифровое: 2.5 В ядро, 3.3В периферия; аналоговое: 3.3 В; допустимое изменение напряжения ±5%;
диапазон рабочих температур от -60 до 85°C;
корпус BGA-192, 17х17 мм, шаг 1 мм.
Для заказа микросхем и по всем интересующим вопросам обращайтесь по телефону: (499) 729-7110 begin_of_the_skype_highlighting (499) 729-7110 end_of_the_skype_highlighting, доб.114; факс: (495) 913-3188.
E-mail: market@elvees.com.

Источник: Элвис


Neobxodimo priwlech ser'eznie organizacionnie i finasowie resursi i po programme zameschenija

dowesti 2*!4 bit *20 msps do 2*14 bit *200-300 msps



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7717
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 20:48. Заголовок: Быстродействующие 14..


Быстродействующие 14-разрядные ЦАП с токовым выходом серии 1273
В статье описаны микросхемы быстродействующих широкополосных 14-разрядных ЦАП серии 1273 разработки ФГУП НИИЭТ, г. Воронеж. Эти ЦАП являются представителями семейства TxDAC и оптимизированы для использования в передающих трактах систем широкополосной связи, оборудовании связи, беспроводных локальных сетях, инструментальных системах, а также в контрольно-измерительной аппаратуре и устройствах прямого цифрового синтеза (DDS). Прототипами микросхем являются изделия фирмы Analog Devices.


М

икросхемы ЦАП и АЦП относятся к числу компонентов, наиболее широко распространенных на мировом рынке электроники, поскольку они объединяют цифровые и аналоговые блоки различных систем РЭА. Среди приборов этого класса важное место занимают быстродействующие ЦАП с разрядностью 8—16 бит, ориентированные, прежде всего, на беспроводные средства связи и инструментальные системы. Для реализации современного уровня требований к таким ЦАП необходимо решать задачи улучшения их динамических характеристик, а также повышения разрешения и скорости восстановления выходного сигнала.

В работе [1] отмечается, что быстродействующие ЦАП для средств связи в большинстве своем выполняются с использованием сегментированной архитектуры на источниках тока (segmented current source architecture), обеспечивающей высокую точность установления сигнала. При этом помимо стандартных параметров, определяющих свойства быстродействующих ЦАП, например производительность, частота обновления выходных данных, время установления, интегральная (INL) и дифференциальная (DNL) нелинейность, вводятся и такие специальные параметры как SFDR — динамический диапазон, свободный от паразитных составляющих (гармоник), IMD — коэффициент интермодуляционных искажений, SNR — отношение сигнал/шум на частоте несущей и др.

Разработка первого отечественного быстродействующего 14-разрядного ЦАП с сегментированной архитектурой на источниках тока 1273ПА4Т была выполнена ФГУП НИИЭТ в 2006 г. Производительность ЦАП составляет до 125 млн выб./с (MSPS). Прототипом микросхемы является AD9764 фирмы Analog Devices. В настоящее время проводится разработка еще трех типов ЦАП с подобной архитектурой — 1273ПА5У, 1273ПА6У и 1273ПА7Т. Микросхемы обеспечивают высокую производительность и имеют в составе различные дополнительные устройства, которые значительно расширяют их функциональные возможности. Сравнительные параметры всех четырех типов ЦАП приведены в таблице 1.

http://www.russianelectronics.ru/developer-r/review/2190/doc/40461/

Автор: Валерий Скляр, зам. нач. отд., ФГУП НИИЭТ; Владимир Горохов, зам. гл. инженера, ФГУП НИИЭТ; Юрий Борисов, вед. инженер-конструктор, ФГУП НИИЭТ; Денис Горбунов, инженер-конструктор 1-й кат., ФГУП НИИЭТ; Сергей Битюцких, инженер-конструктор 1-й кат., ФГУП НИИЭТ

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7718
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 21:00. Заголовок: http://micro.ax-09.r..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7719
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 04.01.12 22:55. Заголовок: http://www.analog.co..


http://www.analog.com/static/imported-files/tutorials/MT-025.pdf


pushed the core technology to 14-bits with the release of the AD6644 14-bit 65-MSPS ADC in 1999, the AD6645 14-bit 80-MSPS ADC in 2001, and a 105-MSPS version of the AD6645 in 2003. Although these ADCs use the error-corrected pipelined subranging architecture, the internal building block core ADCs utilize the MagAMP™ architecture. Page



Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7732
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.01.12 17:56. Заголовок: 16-Bit, 250MSPS ISL..


16-Bit, 250MSPS ISLA216P25

The ISLA216P is a family of low power, high performance
16-bit analog-to-digital converters. Designed with Intersil’s
proprietary FemtoCharge™ technology on a standard CMOS
process, the family supports sampling rates of up to
250MSPS.

• Total Power Consumption = 786mW @ 250MSPS

Digital output data is presented in selectable LVDS or CMOS
formats.

Applications
• Radar Array Processing

SNR 72.1 db/363 mhz 71.1db/461 mhz 69.2db/605 mhz
SINAD 71.6 69.2 65.7
ENOB 11.60 11.20 10.62
SFDR 81 db 73 db 67 db

http://www.intersil.com/data/fn/fn7574.pdf


Functional Description
The ISLA216P25 is based upon a 16-bit, 250MSPS A/D converter
core that utilizes a pipelined successive approximation
architecture (Figure 18). The input voltage is captured by a
Sample-Hold Amplifier (SHA) and converted to a unit of charge.
Proprietary charge-domain techniques are used to successively
compare the input to a series of reference charges. Decisions
made during the successive approximation operations determine
the digital code for each input value. Digital error correction is also
applied, resulting in a total latency of 10 clock cycles. This is
evident to the user as a latency between the start of a conversion
and the data being available on the digital outputs.


dlja srawnenija AD9467 ,wische 300 mhz parametri ne normirowanni
-----------------------------------------------------------------------------------

http://www.analog.com/static/imported-files/data_sheets/AD9467.pdf

pervij pok 2 volta ,wtoroj dlja 2.5 volta p-p analog input

SNR 73.3/74.6 db /300 mhz
SINAD 73.1 dbfs/ 74.4
ENOB 11.9/12.1 db
SFDR 93/90 dBFS


THEORY OF OPERATION
The AD9467 architecture consists of an input-buffered pipe-lined ADC that consists of a 3-bit first stage, a 4-bit second stage, followed by four 3-bit stages and a final 3-bit flash. Each stage provides sufficient overlap to correct for flash errors in the preceding stage.
The input buffer provides a linear high input impedance (for ease of drive) and reduces the kick-back from the ADC. The buffer is optimized for high linearity, low noise, and low power. The quantized outputs from each stage are combined into a final 16-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate with a new input sample while the remaining stages operate with preceding samples. Sampling occurs on the rising edge of the clock.
Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched-capacitor DAC and an interstage residue amplifier (for example, a multiplying digital-to-analog converter (MDAC)). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The output staging block aligns the data, corrects errors, and passes the data to the output buffers.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7733
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.01.12 18:48. Заголовок: Pipelineconverter . ..


Pipelineconverter . Opisanie prinzipov ot TI

http://www.lte.eei.uni-erlangen.de/download/AUD/lesson10.pdf

Pipeline ot TI

12bit 1 gsps AD5400
12bit 500/550 msps ADS5463
14 bit 400 msps ADS5474
16 bit 200 msps ADS5484/85


Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7734
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.01.12 19:15. Заголовок: http://www.ll.mit.ed..


http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf

Bandwidths that are 10% of the radar’s carrier
frequency are reasonably straightforward to
implement (e.g., 500 MHz at C-band or 1000 MHz
at X-band).


Processing 500-MHz-bandwidth signals in some
conventional pulse-compression scheme was not feasible
with the technology available at the time of
ALCOR’s inception. Consequently, it was necessary
to greatly reduce signal bandwidth while preserving
range resolution. This is accomplished in a timebandwidth
exchange technique (originated at the Airborne
Instrument Laboratory, in Mineola, New York)
called stretch processing [4], which retains range resolution
but restricts range coverage to a narrow thirtymeter
window. In order to acquire and track targets
and designate desired targets to the thirty-meter
wideband window, ALCOR has a narrowband waveform
with a duration of 10.2 мsec and bandwidth of
6 MHz. This narrowband waveform has a much
larger 2.5-km range data window.


During 1972 and 1973, Lincoln Laboratory devel-oped a 512-MHz-bandwidth (on a 1-GHz interme-diate frequency [IF])

t.e. 744 mhz -1256 mhz
-------------------------------------



ALCOR operates at C-band (5672 MHz) with a
signal bandwidth of 512 MHz that yields a range
resolution of 0.5 m. (The ALCOR signal was heavily
weighted to produce low range sidelobes with the
concurrent broadening of the resolution.) Its widebandwidth
waveform is a 10-мsec pulse linearly swept
over the 512-MHz frequency range. High signal-tonoise
ratio of 23 dB per pulse on a one-square-meter
target at a range of a thousand kilometers is achieved

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7736
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 05.01.12 22:40. Заголовок: 1.28.09.1999 Maxim ..


1.28.09.1999 Maxim 8bit/1.5gsps/FLASH MAX108
2. 10/15/2003 Atmel/e2V 10bit/2gsps/FOLDING-INTERPOLATIG TS83102G0B
3.October 2009 TI 12 bit/1gsps/3 stage PIPELINE ADS5400
4. May 24, 2010 National Semiconductor/TI 2*12 bit *1.8 gsps ADC12D1800 FOLDING INTERPOLATING
5. xx.xx.201? XXX company introduce industry first single core 14 bit 1 gsps ADC
architectur -XXX ?

SNR = 70 dbc by Fin 700 ? 1000 mhz ?




1.28.09.1999 Maxim 8bit/1.5gsps/FLASH
--------------------
September 28, 1999-Maxim Integrated Products introduces the MAX108
The MAX108 is the first 8-bit, 1.5Gsps monolithic ADC to achieve
a typical 47dB SINAD and 54dB SFDR at 1.5GHz
http://www.maxim-ic.com/company/newsroom/pr_products/show.mvp/npk/38
The MAX108 achieves a full 47dB SINAD and 54dB SFDR at 750MHz (Nyquist) input frequency. The MAX108 achieves this high performance through both innovative design and the use of Maxim's proprietary 27GHz GST-2 IC bipolar process. An integrated, fully differential input track/hold (T/H) combined with precision laser-trimmed resistors produce a typical INL and DNL of less than ±0.25LSB, a full-power bandwidth of 2.2GHz, and less than 0.5ps aperture jitter.

2. 10/15/2003 Atmel/e2V 10bit/2gsps/FOLDING-INTERPOLATIG
---------------------

10/15/2003 - Atmel® Corporation (Nasdaq: ATML)
The TS83102G0B is the first ADC available that combines 10-bit resolution, 2 Gsps maximum
The TS83102G0B delivers excellent performance while only dissipating 4.6W. SFDR (spurious free dynamic range) is 60dBFS at 1.4Gsps/700MHz input frequency, and still in the 55dBFS range at 2Gsps / 2GHz input frequency. Two-tone third order intermodulation distortion is 65dB at 1.4Gsps over a 500MHz band centered around 1GHz, allowing to digitise high IF broadband signals with adjacent channels with a very low level of parasitic spectrum components. It is further complemented by added features such as data ready output, asynchronous data ready reset and gain controls.

3.October 2009 TI 12 bit/1gsps/3 stage PIPELINE
-----------------------------------------------------------
http://www.electronicsweekly.com/Articles/28/10/2009/47279/ti-unveils-industrys-first-12bit-1gsamples-adc.htm

TI unveils industry's first 12bit 1Gsample/s ADC
Steve Bush
Wednesday 28 October 2009 14:01
Texas Instruments has unveiled industry's first 12bit 1Gsample/s ADC, the ADS5400. A buffered front-end simplifies external circuit design, and fast sampling means up to four can be used together for 4Gsample/s and 2GHz bandwidth.

Preceded by bandpass filter, the device can also be used to under-sample, covering 500MHz-1GHz, 1.0-1.5GHz, or 1.5-2.0GHz.

Spurious-free dynamic range (SFDR) is, according to Beckemeyer, 77-78dB at DC, 72-73dB at 1GHz, and in the 60dB range at 2GHz.

Sample-and-hold and analogue bandwidth are sufficient to cover DC-2GHz in one go by running four converters in parallel. On-chip hardware allows two or four devices to be interleaved.

4. May 24, 2010 National Semiconductor/TI 2*12 bit *1.8 gsps FOLDING INTERPOLATING
------------------------------------------------------------------------------
http://www.redorbit.com/news/technology/1869464/national_semiconductor_introduces_industrys_fastest_12bit_adc/
Introduces Industry’s Fastest 12-bit ADC

SANTA CLARA, Calif., May 24 /PRNewswire-FirstCall/ — National Semiconductor Corp. (NYSE: NSM) today introduced the Industry’s fastest 12-bit analog-to-digital converter (ADC). At 3.6 Giga-samples per second (GSPS), the ADC12D1800 is 3.6 times faster than any other available 12-bit device. The ADC’s dynamic performance of -147 dBm/Hz noise floor, 52 dB noise power ratio (NPR) and -61 dBFS intermodulation distortion (IMD) enables a new generation of software-defined radio (SDR) architectures and applications.

5. xx.xx.201? XXX company introduce industry first single core 14 bit 1 gsps ADC

SNR = 70 dbc by Fin 700 ? 1000 mhz ?

Power consumated = until 5 watt ?




Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7740
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.01.12 17:55. Заголовок: Time interleveaved 1..


Time interleveaved 14 bit *400 msps*4

http://www3.ntu.edu.sg/temasek-labs/images/research/spsoc/TIADCV.pdf

fin 220 mhz/580 mhz

SNR -65.6db/59.7db
SFDR - 78db/68.7dbc
ENOB -10.6/9.6 bit

dlja srawnenija isxodnij ADS5474 bez interleaving

http://www.ti.com/lit/ds/symlink/ads5474.pdf

14 bit 400 msps

230 mhz/650 mhz

SNR- 69.8/67.5 dbfs
SFDR -80/60 dbc
ENOB 10.9 bit/ ....

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7748
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.01.12 22:15. Заголовок: http://www.tekmicro...


http://www.tekmicro.com/PDFs/MuPuRF_Radar.pdf

The practical signal bandwidth is close to 1GHz and the range resolution is close to 15cm.


The core of the TRITON VXS-1 is a Xilinx Virtex-II Pro FPGA circuit along with a 10bit ADC and a 12bit DAC. Both converters can operate at 2 GSamples/sec, giving a Nyquist digital signal bandwidth of 1 GHz. The analog 3 dB-bandwidth extends from 3 MHz to 3 GHz.

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7749
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.01.12 22:46. Заголовок: http://spdevices.com..


http://spdevices.com/index.php/products2/adx4-evm-2000-12

Single-tone at 190 MHz. Fs=2 GS/s, SFDR=82 dBc, ENOB=10.3 bits.
ADX4-EVM-2000/12
4 x 12-bit ADCs interleaved to 2000 MSPS
#################
http://www.intersil.com/converters/ADC_ref_design.asp

Intersil 2GSPS Reference Design

By interleaving Intersil's low power, high sample rate ADCs, it is possible to achieve a combination of ultra-high sample rate and very high dynamic range that is not available in today’s stand-alone ADCs.

This reference design demonstrates the performance attainable by combining Intersil's ADC technology and SP Devices interleaving algorithms. In this design, 4 ISLA112P50 12-bit, 500 MSPS analog-to-digital converters are interleaved to sample at a rate of 2.0 GSPS. At this sampling rate, the reference design provides over 6dB more SNR and 13dB better SFDR than the best alternative stand-alone ADC.

Collaboration of Intersil and SP Devices
Demonstrates 4-way Interleaving of Intersil 500MSPS ISLA112P50s
Sample Rate: 2.0 GSPS
Resolution: 12 Bits
Interleave Correction Details
SP Devices’s ADX4 provides real-time, digital, FPGA based digital interleave correction of four ISLA112P50s
Performance
SNR = 65.5 dBfs @ Fin = 190MHz, a 6dB improvement over current best standalone 2GSPS ADCs
SFDR = 82 dBc @ Fin = 190MHz, a 13dB SFDR improvement over current best standalone 2GSPS ADCS


Zdes Intersil nechesten
------------------------------------

12 bit GSPS ADC - 1-1.15 -1.8 GSPS ot TI,E2V,National/TI

dajut swoi dannie dlja 1 -1.2 ghz-1.33 ghz -1.448 ghz SNR 56-57 db, SFDR 65-66 db

w otlichii ot Intersil na 190 mhz 65.5 dBFS
##############################
ili 63.5 db na 900 mhz

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7750
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 06.01.12 22:54. Заголовок: SP Devices' time..


SP Devices' time-interleaving technology in module from Texas Instruments
TI introduces 14-bit, 800-MSPS digitizer solution leveraging industry's fastest data converters

DALLAS -- Sept. 4, 2008 -- Texas Instruments Incorporated (TI) (NYSE: TXN) today introduced an evaluation module (EVM) that combines TI's fastest 14-bit analog-to-digital converters (ADCs) in an interleaved fashion with a Xilinx® Virtex®-5 FPGA to create the best-performing high-speed digitizer solution in the market. The FPGA comes pre-installed with SP Devices' proprietary time-interleaving technology to eliminate interleaving spurs, which enhances performance and facilitates rapid system-level evaluation for wireless communications, military, test and measurement applications. The EVM joins TI's portfolio of support tools for customers using high-speed data converters in wide-bandwidth applications. (See www.ti.com/ads5474adx-evm-pr.)

The ADS5474ADX-EVM incorporates two of TI's ADS5474 ADCs, a Xilinx Virtex-5 FPGA and SP Devices' proprietary time-interleaving technology to deliver an 800-MSPS ADC solution. The SP Devices' software continuously monitors the system and removes ADC gain, clocking and temperature mismatches to reduce the interleaving spurs below the ADC harmonic spurs. By reducing the interleaving spurs, the software increases spurious free dynamic range (SFDR) from 45.78 dBc to 86.44 dBc for a 70-MHz input signal.
##################################################

Na dannoj Fin y 16 bit 250 msps ADC Intersil 216p25 ili Analog Device AD9467

SFDR 93-95 dbc

"Addressing the industry's ever-increasing demand for higher sampling speeds and extended bandwidth is important to us," said Jonas Nilsson, CEO of SP Devices. "Combining SP Devices' innovative interleaving technology with TI's market-leading data converters allows us to extend performance boundaries of high-speed ADCs, which will enable exciting new applications including multi-carrier systems, software-defined radio, advanced imaging and beyond."

In addition to improved performance for these complex systems, the EVM simplifies evaluation and helps designers bring end systems to market faster. For instance, the continuous monitoring of the ADC's mismatch eliminates the need for an off-line re-calibration routine to account for changes in temperature or other environmental factors, significantly reducing system evaluation and design time.

"With this latest EVM, customers can focus on prototyping advanced architectures to optimize system-level performance in these complex applications, rather than concentrating on developing an interleaving solution," said Mark Stropoli, worldwide marketing manager for TI's High Speed Products.

Availability and packaging

The ADS5474ADX-EVM is available today from TI at www.ti.com/ads5474. Pricing for the EVM is $1,999. The ADS5474ADX-EVM is the latest addition to TI's world-class high-speed and precision data converter tools designed to address a range of applications. For more information, visit the Analog eLabTM Design Center at www.ti.com/analogelab.

Further information about SP Devices' interleaving technology is available at www.spdevices.com.






Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7757
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.01.12 21:48. Заголовок: http://cds.linear.co..


High Sensitivity Receiver Applications Benefi t

http://cds.linear.com/docs/Design%20Note/DSOL44.pdf

The high sampling rate of the LTC2208 provides an advantage
when used in oversampling applications, using
processing gain to improve the receiver’s SNR performance.
Capturing a signal bandwidth of 30MHz requires
an ADC with a sample rate of at least 60Msps. However
if the signal was sampled at a higher rate of 120Msps the
broadband noise fl oor is reduced by 3dB as given by the
following equation

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7758
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.01.12 21:53. Заголовок: 1.1 GHz Bandwidth AD..


1.1 GHz Bandwidth ADC Enables High IF-Sampling for
Space-Based Narrowband Communications Applications

http://www.national.com/assets/en/other/ProdBrief_ADC14155.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7760
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.01.12 22:10. Заголовок: It achieves a small-..


It achieves a small-signal SNR of 72 dBFS
and a SFDR greater than 90 dBFS with a 169 MHz input frequency.
Large signal performance yields a SNR of 68.3 dBFS
and SFDR of 77 dBFS at 169 MHz. In

http://webench.national.com/rd/RD/RD-146.pdf

High IF Receiver Reference
Design

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7761
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.01.12 22:16. Заголовок: http://www.ewh.ieee...


http://www.ewh.ieee.org/r6/scv/ssc/Dec1208.pdf

esche odin linearizator str 35 dlja 14 bit 155msps stojkogo k radiazii ational

SFDR 85 db na 470 mhz protiv 75 db do

Verojatno oschibka w Fin ne 470 a 270 mhz


http://www.ti.com/lit/ds/symlink/adc14155qml.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7763
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 08.01.12 23:47. Заголовок: Performance of subba..

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7765
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.01.12 00:48. Заголовок: Performance of an IF..


Performance of an IF
sampling ADC in receiver
applications
David Buchanan
Staff Applications Engineer
Analog Devices, Inc

http://www.engr.sjsu.edu/rmorelos/ee160s04/2001APR03_AMD_RFD_TAC.pdf

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7768
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 09.01.12 01:55. Заголовок: http://www.eleceng.a..


http://www.eleceng.adelaide.edu.au/Personal/mtrinkle/IRS2006.pdf

SNR Considerations for RF Sampling Receivers for Phased Array
Radars
Matthew Trinkle*

Спасибо: 0 
Профиль
milstar
moderator




Сообщение: 7823
Зарегистрирован: 09.02.08
Репутация: 0
ссылка на сообщение  Отправлено: 13.01.12 13:46. Заголовок: Radar data acquisiti..


Radar data acquisition is facilitated by the 200 MHz, 16-bit A/Ds which capture the 140 MHz IF signals with 40 MHz bandwidth

http://www.pentek.com/tutorials/19_2/Radar.cfm

Спасибо: 0 
Профиль
Ответов - 301 , стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 All [только новые]
Тему читают:
- участник сейчас на форуме
- участник вне форума
Все даты в формате GMT  3 час. Хитов сегодня: 72
Права: смайлы да, картинки да, шрифты нет, голосования нет
аватары да, автозамена ссылок вкл, премодерация откл, правка нет



Перспективная зенитная ракетная система противовоздушной и противоракетной обороны ЗРС С-400 "Триумф"